

Kaarel Moppel
Senior Consultant
at CYBERTEC

I’ve been interested with
databases for the last 9 years,
working last 5 years exclusively
with PostgreSQL. And still I’m
constantly surprised by it’s
powerful set of features and the fast pace of
development by the globally friendly
community.

On a recent conference we came into contact with people working on an
interesting hardware project called M2DC - the Modular Microserver Data
Centre.

The project is about building modular, scalable, low-power servers (that could
be clustered), that is developed in co-operation by a group of hardware and
software companies - Toradex, Brytlyt, Christmann and the University of
Bielefeld - and supported by European Union’s Horizon 2020 research and
innovation program.

End goal of the project: reduce TCO of exploiting servers by 50%.
So it seems to be quite a big development effort, but the first fruits are already
available for general purpose applications (speed of thought: analytics, deep
learning etc).

After asking nicely we got access to a cluster of 20 nodes based on Tegra TK1 SoC-
s (32-bit 4 core ARM v7 CPU architecture), integrated all into one small 1U rack unit.

Why did the project catch our attention in the first place?
Because PostgreSQL is one of those few most widespread RDBMS-s that can run
nicely on ARM architecture!

So let’s see in more details what’s inside the box and what can it do.

www.cybertec-postgresql.com

http://m2dc.eu/en/

Tegra TK1 based cluster hardware

NVIDIA SoC CD575M-A1
CPU Cores 4+1 (4 CPU + 1 Microcontroller)

ARM Cortex Version A15

GPU 192 CUDA® Cores

L1 Instruction Cache (per
core)

32KByte

L1 Data Cache (each core) 32KByte

L2 Cache (shared by cores) 2MByte

Maximum CPU frequency 2.2GHz

DDR3L RAM Size 2GByte

DDR3L RAM Speed 1866MT/s (64bit bus)

eMMC (SSD) disk 16GB

Network 1GbE

Max TDP 15 W

20 Apalis TK1 Compute Modules in 1U size
RECS|Box Compute Unit with following specs:

One such compute module looks something
like that (picture right) and costs ~200 EUR
(cheaper for larger quantities) for one
module.

www.cybertec-postgresql.com

Software

Nodes had Ubuntu 14.04.5 LTS installed on them
and for our testing we used standard Postgres

9.6.1 compiled from sources.

Performance of compiling Postgres

Before getting to the real test, the first observation is already interesting:
How long does compiling on a single ARM node take compared to a similar
amd64 server?

Choosing a similar amd64 server setup here is very difficult though as
comparing clock speeds doesn’t tell the whole story (32 vs 64 bits, cache sizes)
but scanning through AWS EC2 instance type specs seems that the most
similar should be m3.xlarge. It has the same amount of cores (4) at slightly
bigger clock speeds (2.5 GHz Xeon E5-2670 v2 vs 2.2 Ghz on Tegra, 14%
difference) and also a lot more RAM (15GB vs 2GB), but for our case it shouldn’t
actually matter though as compiling Postgres only typically uses less than 300
MB of memory.

So here are the results:

Make Make -j 4

Tegra TK1 650s 205s

m3.xlarge 202s 91s

Well, what we can see is that compiling is actually a lot slower on Tegra. The
result can’t be explained by just the CPU clock speed difference.

Might just be that compiling on RISC architecture is inherently slower due to
fewer available CPU instruction (thus more workarounds) and more memory
access. Also Intel server processors have quite big L3 caches which TK1
doesn’t have.

www.cybertec-postgresql.com

Performance of pgbench read-only

Test 1 – read-only, scale 10, clients 2, 4, 8, 16, 32 (3x5min for each)

To remove element of disk access (nodes had small slowish SSD installed +
NFS shares) and to see memory access/threading in action I decided to test
with a small read-only dataset of scale=10, yielding 128 MB size for
pgbench_accounts. Postgres shared buffers was configured at 512MB, all other
settings left to default. Postgres version 9.6.1.

Here are the results:

What do we see?

Well, m3.xlarge still leads by average ~24% on low client numbers (2-8) but
considering 14% higher clock speeds it’s all good. But what happens at client
counts 16 and 32?

A massive slowdown for the Tegra...how can one explain that?

www.cybertec-postgresql.com

… how … ?
Looking at the CPU load graph (captured by the way with a new Postgres
monitoring tool that we’re hoping to release very soon) seems that the CPU load is
actually very light, staying below 8 at all times.

Hmm, what could be the reason then?

All the data is also nicely cached by Postgres (hit ratio 100% as seen from the
graph) so we’re not waiting for disk. After checking CPU load numbers also on
the Intel machine (they were similarly low) my best bet is again pointing to
architectural differences.

Meaning bigger penalties for heavier context switching scenarios (every
Postgres client/backend runs as a separate process) and perhaps also on
using synchronization primitives (locking) that Postgres is making use of to
protect shared resources, like 16k of shared buffers in our case.

www.cybertec-postgresql.com

Conclusion

Drawing a conclusion is not easy here.

The Tegra-based node performed
good for our read-only test for client
counts to 8, being a tad slower but
considering the fact that its power
usage is also many times lower than
of typical server nodes, you’ll get
way more performance per watt as
with normal servers.

Direct number comparisons are
again difficult but for example the
Xeon E5-2670 v2 working in our
m3.xlarge has a per CPU TDP of
115W (10 cores) but Tegra cluster has
a maximum TDP of 15W per module
(including 4 CPU cores + 192 GPUs +
RAM), so it would be at least 4-5
times more efficient, project website
itself stating 10-100x range.

Links with more info about the M2DC project

http://m2dc.eu/
https://www.toradex.com/computer-on-modules/apalis-arm-family/nvidia-tegra-k1
https://recswiki.christmann.info/wiki/doku.php?id=documentation:introduction#apalis_modules_arm

So in the end I think such nodes used
in a cluster setup could make a lot of
sense for mass OLTP solutions with
relatively simple operations as metrics
ingestion from thousands of agents,
IOT etc., where it comes down to
cheap processing power.

For analytics though not too much, as
memory is still somewhat limited and
being 32-bits could turn into a
bottleneck also.

So how could one make use of the
cluster? For our test we just used a
single node to test the basic
capabilities, but a good way (in sense
that no 3rd party or custom code
needed) would be using Postgres
Foreign Data Wrappers in
combination with table inheritance for
sharding.

Combined with some cheaper
network storage one could really get
a good price/performance ratio here.
Best resource utilization for the nodes
would be through making use of all
the GPUs (192x CUDA cores) but setup
of that is a bit complex (CUDA driver +
PGStrom extension on Postgres side).
Maybe we’ll find some time soon to
try out CUDA or FDW clustering and
bring you another test.

www.cybertec-postgresql.com

http://m2dc.eu/
https://www.toradex.com/computer-on-modules/apalis-arm-family/nvidia-tegra-k1
https://recswiki.christmann.info/wiki/doku.php?id=documentation:introduction#apalis_modules_arm

CYBERTEC PostgreSQL
International GmbH

Gröhrmühlgasse 26
2700 Wiener Neustadt
Austria

Web: www.cybertec-postgresql.com

Phone: +43 (0)2622 93022-0
Fax: +43 (0)2622 93025
E-Mail: sales@cybertec.at

Visit us on:
Facebook | Twitter | LinkedIn |
Xing | GitHub

www.cybertec-postgresql.com

http://www.cybertec-postgresql.com/
mailto:sales@cybertec.at
https://www.facebook.com/cybertec.postgresql/
https://twitter.com/postgressupport
https://www.linkedin.com/company/cybertec-postgresql
https://www.xing.com/companies/cybertecsch%C3%B6nig&sch%C3%B6niggmbh
https://github.com/cybertec-postgresql

