
Detecting performance problems and fixing them

Hans-Jürgen Schönig

www.postgresql-support.de

Hans-Jürgen Schönig
www.postgresql-support.de

About Cybertec

Hans-Jürgen Schönig
www.postgresql-support.de

Cybertec: The PostgreSQL Company

I We provide
I 24x7 support for PostgreSQL
I professional training
I PostgreSQL consulting
I PostgreSQL high-availability

Hans-Jürgen Schönig
www.postgresql-support.de

Scope of this training

Hans-Jürgen Schönig
www.postgresql-support.de

Topics

I How to detect performance problems
I Tracking down slow queries
I Hunting I/O problems
I Optimizing postgresql.conf for speed
I Optimizing storage
I Finding slow stores procedures
I Trading durability for speed

Hans-Jürgen Schönig
www.postgresql-support.de

Gather data

Hans-Jürgen Schönig
www.postgresql-support.de

pg_stat_statements: A must for everybody

I Finding performance problems is impossible without data
I To stress this point:

I No data, no improvements

I pg_stat_statements is the best way to approach the problem

Hans-Jürgen Schönig
www.postgresql-support.de

Installing pg_stat_statements

I adjust postgresql.conf:

shared_preload_libraries = 'pg_stat_statements'

I restart the database
I create the extension in your database of choice

CREATE EXTENSION pg_stat_statements;

Hans-Jürgen Schönig
www.postgresql-support.de

Finding relevance (1)

I NEVER EVER read pg_stat_statements without ordering the
table

I People tend to get stuck and inspect irrelevant data
I ORDER BY:

I total_time DESC
I calls DESC
I I/O timing, etc.

I Consider building a view

http://www.cybertec.at/2015/10/pg_stat_statements-the-way-i-
like-it/

Hans-Jürgen Schönig
www.postgresql-support.de

Finding relevance (2)

I Work top down
I The 10th row can by definition not contribute more than 10%

to the overall problem
I Try to reduce the amount of information you are looking at

Hans-Jürgen Schönig
www.postgresql-support.de

Configuring pg_stat_statements (1)

I Queries might be cut off
I Especially relevant to Java developers
I ORMs tend to produce insanely long SQL statements

I Raise . . .
track_activity_query_size = 1024

Hans-Jürgen Schönig
www.postgresql-support.de

Configuring pg_stat_statements (2)

I pg_stat_statements.max: How many statements are tracked?
I pg_stat_statements.save: Specifies whether to save statement

statistics across server shutdowns.

Hans-Jürgen Schönig
www.postgresql-support.de

Resetting data

SELECT pg_stat_statements_reset();

Hans-Jürgen Schönig
www.postgresql-support.de

pg_stat_statements: Overhead

I Use at least PostgreSQL 9.2
I Older versions are basically not usable
I Overhead of new versions can be seen as “noise”
I The module can always be activated
I Having no data is ways more expensive

Hans-Jürgen Schönig
www.postgresql-support.de

Inspecting disk wait

I CPU consumption can be measured easily
I By default pg_stat_statements does not show disk wait
I Consider activating track_io_timing

I It is off by default
I Overhead can be substantial

Hans-Jürgen Schönig
www.postgresql-support.de

Use pg_test_timing

iMac:~ hs$ pg_test_timing
Testing timing overhead for 3 seconds.
Per loop time including overhead: 38.28 nsec
Histogram of timing durations:
< usec % of total count

1 96.21594 75400031
2 3.78017 2962348
4 0.00016 123

Hans-Jürgen Schönig
www.postgresql-support.de

pg_test_timing: Considerations

I Values between 14 and 1900 nsec have been observed
I Virtualization can be a speed killer
I Consider: Time has to be checked millions of times
I When track_io_timing is on blk_read_time and

blk_write_time will contain data.
I I/O time can be compared to CPU time in this case

Hans-Jürgen Schönig
www.postgresql-support.de

Inspecting queries

Hans-Jürgen Schönig
www.postgresql-support.de

Inspecting execution plans

I Once you have identified slow queries, check out how
PostgreSQL handles them

I EXPLAIN ANALYZE is the key to success
I Try to figure out, where time is burned
I Check for errors in those estimates

Hans-Jürgen Schönig
www.postgresql-support.de

Using EXPLAIN

test=# \h EXPLAIN
Command: EXPLAIN
Description: show the execution plan of a statement
Syntax:
EXPLAIN [(option [, ...])] statement
EXPLAIN [ANALYZE] [VERBOSE] statement

where option can be one of:
ANALYZE [boolean] VERBOSE [boolean]
COSTS [boolean] BUFFERS [boolean]
TIMING [boolean]

FORMAT { TEXT | XML | JSON | YAML }

Hans-Jürgen Schönig
www.postgresql-support.de

Check for missing indexes

I Before you look at
I filesystem
I RAID level
I memory
I etc

I CHECK FOR MISSING INDEXES !!!
I will solve at least 60% of all common performance problems

Hans-Jürgen Schönig
www.postgresql-support.de

A word of caution

I There is no such thing as “almost correct indexing”
I A single missing index can turn a perfect system in a nightmare.
I Doing too much too often

I No way to fix that with hardware

Hans-Jürgen Schönig
www.postgresql-support.de

Finding missing indexes

I Use our “miracle query”:

SELECT schemaname, relname, seq_scan, seq_tup_read,
seq_tup_read / seq_scan AS ratio, idx_scan

FROM pg_stat_user_tables
WHERE seq_scan > 0
ORDER BY seq_tup_read DESC
LIMIT 15;

Hans-Jürgen Schönig
www.postgresql-support.de

What to look for?

I Look for large tables scanned too often
I There will always be sequential scans

I Small tables
I Backups
I Analytics
I etc.

I Reading large tables too often is poison
I Reasonable sequential scans are perfectly fine

Hans-Jürgen Schönig
www.postgresql-support.de

A classical example

I Can you see the problem?

CREATE TABLE t_user
(

id serial PRIMARY key,
username text,
passwd text

);
CREATE TABLE

Hans-Jürgen Schönig
www.postgresql-support.de

Prevent “over indexing”

I Too many indexes will slow down writes
I Indexing everything is also bad
I Look for indexes, which are never used

Hans-Jürgen Schönig
www.postgresql-support.de

Finding pointless indexes

SELECT relname, indexrelname, idx_scan,
pg_relation_size(indexrelid),
sum(pg_relation_size(indexrelid))

OVER (ORDER BY idx_scan, indexrelid)
FROM pg_stat_user_indexes
ORDER BY 3;

I Real work problem seen at a client: 74% of disk space was
occupied by indexes, which were NEVER used (= 0 times)

I It ruined performance completely

Hans-Jürgen Schönig
www.postgresql-support.de

Looking for wrong estimates

test=# explain (analyze true, verbose true)
SELECT count(*) FROM generate_series(1, 1000000);

QUERY PLAN

Aggregate (cost=12.50..12.51 rows=1 width=8)

(actual time=233.053..233.053 rows=1 loops=1)
Output: count(*)
-> Function Scan on generate_series

(cost=0.00..10.00 rows=1000)
(actual time=84.598..174.208 rows=1000000 loops=1)

Function Call: generate_series(1, 1000000)
(7 rows)

Hans-Jürgen Schönig
www.postgresql-support.de

What we see

I Estimates are ways off (due to the function call)
I PostgreSQL can (in most cases) not look into functions
I Various execution times are shown
I HINT: Try to see, where time “jumps”

Hans-Jürgen Schönig
www.postgresql-support.de

Startup costs. vs. total costs

I Startup costs: When does this node yield the first row.
I Total costs: How long does it take to produce the last row.

Hans-Jürgen Schönig
www.postgresql-support.de

Adjusting costs

I The cost model can be adjusted
I PostgreSQL provides various parameters to do that
I However, it requires a deep understanding of what is going on
I Be aware of side effects

Hans-Jürgen Schönig
www.postgresql-support.de

Best parameters to adjust I/O costs

I seq_page_cost: Adjust costs of sequential reads
I random_page_cost: Cost to read a random block

I On SSDs the default can be changed from 4 to 1 to adjust for
low seek times

I effective_cache_size: Tells the optimizer about how much
RAM to expect

I Keep in mind: The consequences can be “unexpected” in some
cases

Hans-Jürgen Schönig
www.postgresql-support.de

Nested loops: My favorite pitfall (1)

I What a nested loop does

for x in a:
for y in b:

if x == y:
yield row

Hans-Jürgen Schönig
www.postgresql-support.de

Nested loops: My favorite pitfall (2)

I What happens if the nested loop is underestimated?
I What are the symptoms?

I CPU will go through the roof
I Runtime might vary A LOT depending on input parameters
I Changes might occur sudden

I Try and see what changes:
SET enable_nestloop TO off;

I This is pretty advanced already

Hans-Jürgen Schönig
www.postgresql-support.de

Exercise:

I Run the following query and tell me where it might go wrong
I Where is the planner wrong?
I Is it a problem or not?

SELECT * FROM pg_stats;

Hans-Jürgen Schönig
www.postgresql-support.de

Exercise: Remarks . . .

I There are no statistics for the output of functions
I PostgreSQL has to make static assumptions
I This can fool the planner
I Wrong estimates can lead to unexpected stuff.

Hans-Jürgen Schönig
www.postgresql-support.de

Function statistics (1)

test=# explain SELECT *
FROM generate_series(1, 10000000) AS x WHERE x < 0;

QUERY PLAN
--
Function Scan on generate_series x

(cost=0.00..12.50 rows=333 width=4)
Filter: (x < 0)

Hans-Jürgen Schönig
www.postgresql-support.de

Function statistics (2)

test=# explain SELECT *
FROM generate_series(1, 10000000) AS x WHERE x > 0;

QUERY PLAN
--
Function Scan on generate_series x

(cost=0.00..12.50 rows=333 width=4)
Filter: (x > 0)

Hans-Jürgen Schönig
www.postgresql-support.de

explain (buffers true, . . .)

I “buffers true” will tell us about the I/O behavior of the query
I You can also see that in pg_stat_statements
I The more buffers the query needs, the more runtime might

fluctuate (a query can easily be 100x slower or faster)
I Unstable runtime is often caused by unpredictable caching
I Low cache rates are not as bad for sequential scans as for index

scans
I Watch out for random I/O (= most expensive)

Hans-Jürgen Schönig
www.postgresql-support.de

Buffers: Side note

I Keep in mind that a cache miss does not necessarily mean
“disk hits”

I The filesystem cache is there for you
I Try to calculate average costs of a block to get an idea of how
“random” you are.

Hans-Jürgen Schönig
www.postgresql-support.de

Hidden “performance” problems (1)

What is potentially wrong in the following example?

CREATE TABLE a (aid int);
CREATE TABLE b (bid int);

INSERT INTO a VALUES (1), (2), (3);
INSERT INTO b VALUES (2), (3), (4);

Hans-Jürgen Schönig
www.postgresql-support.de

Hidden “performance” problems (2)

I How many rows do you expect?

test=# SELECT *
FROM a LEFT JOIN b

ON (aid = bid AND bid = 2);
aid | bid

-----+-----
1 |
2 | 2
3 |

(3 rows)

Hans-Jürgen Schönig
www.postgresql-support.de

Hidden “performance” problems (3)

I This one comes hidden as performance problem but in fact it is
a logical problem

I Aggregates might hide the logical mistake.
I Watch out for outer joins
I Most people do NOT know how to write them properly
I Expect semantic errors (double check !)

Hans-Jürgen Schönig
www.postgresql-support.de

Obvious stuff: Unfortunately relevant

I Go to www.google.com and search for “USA”
I You will find millions of hits

I Google will tell you so
I However, not more than around 30 pages are really available

I Why does everybody else want an exact count?
I Exact counting in search forms is a MAJOR performance

problem
I Yes, this is an obvious thing

Hans-Jürgen Schönig
www.postgresql-support.de

I/O bottlenecks

Hans-Jürgen Schönig
www.postgresql-support.de

A simple example:

I 10.000 INSERT statements (single transactions)

CREATE TABLE t_test (id int);

INSERT INTO t_test VALUES (1);
INSERT INTO t_test VALUES (1);
...
INSERT INTO t_test VALUES (1);

Hans-Jürgen Schönig
www.postgresql-support.de

COMMIT: The impact of disk flushes

I Depending on your hardware runtime might fluctuate
I we have seen 1 sec - 3 minutes 50 seconds

I Remember: On COMMIT PostgreSQL has to flush to disk
I CPU is not the problem here
I Copying large files to measure throughput is pointless

Hans-Jürgen Schönig
www.postgresql-support.de

Testing disk flushes: pg_test_fsync

I Can help to see, how your I/O system behaves
I Easy to use

iMac:~ hs$ pg_test_fsync --help
Usage: pg_test_fsync [-f FILENAME] [-s SECS-PER-TEST]

Hans-Jürgen Schönig
www.postgresql-support.de

Trading speed for durability

I synchronous_commit tells PostgreSQL what to do on
COMMIT

I on: Flush EVERY transaction to disk. No data is lost after a
crash. Major performance bottleneck for small transactions.

I off: Introduces a potential window of data loss (= 3 x
wal_writer_delay). This is fine for many applications. Pointless
if your transactions are large.

I commit_delay: Tells a session to wait hoping that other
transactions will commit at the same time. The idea is to save
on disk flushes

Hans-Jürgen Schönig
www.postgresql-support.de

commit_delay: Grouping COMMITs

I Wait for a couple of microseconds before really flushing the
WAL

I It is a synchronous method to commit transactions
I Makes sense if you have many concurrent transactions

Hans-Jürgen Schönig
www.postgresql-support.de

commit_siblings: Ensuring concurrency

I Minimum number of concurrent open transactions required
before using the commit_delay setting.

I Feel free to experiment.
I It can be hard to set this parameter “correctly” as concurrency

and transaction sizes might vary.

Hans-Jürgen Schönig
www.postgresql-support.de

Reducing I/O: Transaction log bypasses

I There are ways to bypass the PostgreSQL transaction log in
some cases

I Two major features:
I CREATE UNLOGGED TABLE
I Specially designed transactions

Hans-Jürgen Schönig
www.postgresql-support.de

CREATE UNLOGGED TABLE

I Ideal for staging table
I The table can be used just like any other table
I Will reduce I/O significantly (no WAL written)
I Downsides:

I Table is guaranteed to be empty in case the server crashes

Hans-Jürgen Schönig
www.postgresql-support.de

Designing transactions for the WAL bypass

BEGIN;
CREATE TABLE case1 (....);
COPY case1 FROM ...
COMMIT;

BEGIN;
TRUNCATE case2 ...
COPY case2 FROM ...;
COMMIT;

Hans-Jürgen Schönig
www.postgresql-support.de

WAL-bypass: case1

I Flush the table at the end of the transaction
I Nobody but you can see the table

I Concurrency is not the issue here
I Just flush the data file

Hans-Jürgen Schönig
www.postgresql-support.de

WAL-bypass: case2

I TRUNCATE puts a file in quarantine
I Data file will be removed from disk on commit
I Data file will be needed on rollback

I TRUNCATE creates a table lock
I No concurrency

I At the end:
I Flush the new table file or
I Take the old data file

I There is never a case requiring files to be repaired using the
WAL

Hans-Jürgen Schönig
www.postgresql-support.de

Using tablespaces

I Adding tablespaces only makes sense if you add hardware to
the system.

I Having 10 tablespaces on the same disk is pointless
I Splitting up WAL, data, and indexes can make sense

I Same rules apply for most database systems

Hans-Jürgen Schönig
www.postgresql-support.de

Tablespaces and parallel queries

I Tablespaces will be even more useful as parallel queries take off
I Scaling up I/O can be a major issue in analytics

Hans-Jürgen Schönig
www.postgresql-support.de

Choosing a filesystem

I XFS and ext4 are absolutely fine.
I Avoid COW (= Copy-On-Write) filesystems

I btfs and alike are NOT GOOD for database work
I I/O tends to be too random

I EXPERIENCE: Before blaming the filesystem, consider fixing
indexing

Hans-Jürgen Schönig
www.postgresql-support.de

Improving the I/O configuration

I PostgreSQL cannot keep the transaction log forever
I At some point it has to be recycled
I To recycle WAL PostgreSQL has to ensure that data has safely

reached the data files:
I So called “checkpoints” are here to ensure that

I Checkpoint distances, etc. can be configured

Hans-Jürgen Schönig
www.postgresql-support.de

Checkpoint settings (1)

I min_wal_size: If WAL disk usage is below this value, old WAL
is recycled and not removed.

I max_wal_size: Maximum size of the WAL (soft limit). This
can have an impact on recovery times after a crash

I checkpoint_timeout: Maximum time between two checkpoints

Hans-Jürgen Schönig
www.postgresql-support.de

Checkpoint settings (2)

I checkpoint_warning: Tells us that the server checkpoints too
frequently.

I Checkpointing too often is not risky
I It “only” leads to bad performance
I Can happen during bulk loading, etc.

I checkpoint_completion_target: Fraction of total time between
checkpoints.

I Do you want short or long checkpoints?
I It is mostly about flattening I/O spikes

Hans-Jürgen Schönig
www.postgresql-support.de

General advise

I Checkpointing too frequently is bad for performance
I Long checkpoint distances lead to longer recovery on startup
I If you have a LOT of memory:

I Adjust kernel settings (vm.dirty_ratio, etc.)

I PostgreSQL 9.6 has some onboard means to handle a lot with
onboard variables

I Older versions need some more adjustments on the kernel side

Hans-Jürgen Schönig
www.postgresql-support.de

Linux kernel settings (1):

I vm.dirty_background_ratio: is the percentage of system
memory that can be filled with “dirty” pages before pdflush,
etc. kick in

I vm.dirty_ratio: is the absolute maximum amount of system
memory that can be filled with dirty pages before everything
must get committed to disk

I vm.dirty_background_bytes and vm.dirty_bytes are another
way to specify these parameters. If you set the bytes version
the ratio version will become 0, and vice-versa.

Hans-Jürgen Schönig
www.postgresql-support.de

Linux kernel settings (2):

I vm.dirty_expire_centisecs is how long (3000 = 30 seconds)
data can be in cache before it has to be written. When the
pdflush/flush/kdmflush processes kick in they will check to see
how old a dirty page is, and if it’s older than this value it’ll be
written asynchronously to disk.

Hans-Jürgen Schönig
www.postgresql-support.de

Adjusting memory parameters

Hans-Jürgen Schönig
www.postgresql-support.de

Adjusting memory parameters:

I The following memory parameters will need a review:
I shared_buffers
I work_mem
I maintenance_work_mem
I wal_buffers
I temp_buffers
I effective_cache_size

Hans-Jürgen Schönig
www.postgresql-support.de

shared_buffers: The PostgreSQL I/O cache

I Memory is allocated on startup and never resized
I 25 - 40% of system memory
I Correct value depends on workload
I Use larger values in case of large checkpoint distances
I PostgreSQL relies on filesystem caching as well
I HINT: DO NOT use too much

I High values can turn against you
I Rule of thumb: max. 8-16GB

Hans-Jürgen Schönig
www.postgresql-support.de

work_mem

I Used by operations such as sorting, grouping, etc.
I Will be allocated on demand (per operation)
I It is a local value - not a global one

Hans-Jürgen Schönig
www.postgresql-support.de

work_mem in action (1):

CREATE TABLE t_test (id serial, name text);
INSERT INTO t_test (name)

SELECT 'hans' FROM generate_series(1, 100000);
INSERT INTO t_test (name)

SELECT 'paul' FROM generate_series(1, 100000);
ANALYZE;

Hans-Jürgen Schönig
www.postgresql-support.de

work_mem in action (2):

test=# explain SELECT name, count(*)
FROM t_test GROUP BY 1;

QUERY PLAN
--
HashAggregate (... rows=2 width=13)

Group Key: name
-> Seq Scan on t_test (... rows=200000 width=5)

(3 rows)

Hans-Jürgen Schönig
www.postgresql-support.de

work_mem in action (3):

test=# explain SELECT id, count(*)
FROM t_test GROUP BY 1;

QUERY PLAN
--
GroupAggregate (... rows=200000 width=12)

Group Key: id
-> Sort (.. rows=200000 width=4)

Sort Key: id
-> Seq Scan on t_test
(... rows=200000 width=4)

(5 rows)

Hans-Jürgen Schönig
www.postgresql-support.de

work_mem in action (4):

SET work_mem TO '1 GB';
explain SELECT id, count(*) FROM t_test GROUP BY 1;

QUERY PLAN

HashAggregate (... rows=200000 width=12)

Group Key: id
-> Seq Scan on t_test (... rows=200000 width=4)

(3 rows)

Hans-Jürgen Schönig
www.postgresql-support.de

work_mem in action (5):

I work_mem will also speed up sorting
I if data does not fit into work_mem, PostgreSQL has to go to

disk, which is expensive

Hans-Jürgen Schönig
www.postgresql-support.de

maintenance_work_mem

I The same as work_mem but used for administrative tasks such
as

I CREATE INDEX
I ALTER TABLE
I VACUUM
I etc.

Hans-Jürgen Schönig
www.postgresql-support.de

temp_buffers

I Sets the maximum number of temporary buffers used by each
database session.

I These are session-local buffers used only for access to
temporary tables.

Hans-Jürgen Schönig
www.postgresql-support.de

wal_buffers

I Usually auto-tuned
I Defines the amount of shared memory used to store unwritten

WAL
I Historically this was 64kb, which caused SERIOUS performance

issues
I Consider using 16MB+
I Extremely large values are not beneficial, however (but not

counterproductive either)

Hans-Jürgen Schönig
www.postgresql-support.de

effective_cache_size

I The operating system caches too
I Telling PostgreSQL about the total amount of memory in your

system makes sense
I I/O estimates for index pages can be adjusted by the planner
I Rule of thumb: 70% of total RAM

Hans-Jürgen Schönig
www.postgresql-support.de

Stored procedures

Hans-Jürgen Schönig
www.postgresql-support.de

Tracking down slow stored procedures

I Stored procedures can be a major performance bottleneck
I Fortunately PostgreSQL provides us with runtime statistics
I Consider setting track_function = ‘all’ in postgresql.conf

Hans-Jürgen Schönig
www.postgresql-support.de

Inspecting pg_stat_user_functions

test=# \d pg_stat_user_functions
View "pg_catalog.pg_stat_user_functions"

Column | Type | Modifiers
------------+------------------+-----------
funcid | oid |
schemaname | name |
funcname | name |
calls | bigint |
total_time | double precision |
self_time | double precision |

Hans-Jürgen Schönig
www.postgresql-support.de

total_time vs. self_time

I A function can have high total_time but low self_time
I Usually wrapper functions

I Focus more on self_time
I Time is really lost in those functions

Hans-Jürgen Schönig
www.postgresql-support.de

Frequent causes of slow functions

I By default functions are VOLATILE
I Functions might be called too often in this case

I Consider using:
I STABLE: The function will return the same value given the

same parameters inside a transaction.
I IMMUTABLE: The function will always return the same value

given the same input regardless of the transaction

I Examples: random() is volatile, now() is “stable”, pi() and
cos(x) are “immutable”

Hans-Jürgen Schönig
www.postgresql-support.de

Impacts on performance

SELECT * FROM tab WHERE value = random();
SELECT * FROM tab WHERE value = now();
SELECT * FROM tab WHERE value = pi();

I The first query CANNOT use indexes
I Can be a MAJOR performance bottleneck (!)

I The 2nd and 3rd query can

Hans-Jürgen Schönig
www.postgresql-support.de

Contact

Hans-Jürgen Schönig
www.postgresql-support.de

Contact data

Cybertec Schönig & Schönig GmbH
Gröhrmühlgasse 26
A-2700 Wiener Neustadt
Austria

Website: www.postgresql-support.de

Follow us on Twitter: @PostgresSupport, postgresql_007

Hans-Jürgen Schönig
www.postgresql-support.de

	About Cybertec
	Scope of this training
	Gather data
	Inspecting queries
	I/O bottlenecks
	Adjusting memory parameters
	Stored procedures
	Contact

