
PostgreSQL: Security

Hans-Jürgen Schönig

Hans-Jürgen Schönig

Introduction

Hans-Jürgen Schönig

PostgreSQL security

I PostgreSQL allows to configure various layers of security
I The permission system has been improved over the years

Hans-Jürgen Schönig

Network configuration

I Adjust listen_addresses in postgresql.conf to turn the network
on / off

I Add your OWN IP addresses
I listen_adresses defines, which of your interfaces PostgreSQL

will consider
I A restart is required

Hans-Jürgen Schönig

Adjusting pg_hba.conf

I pg_hba.conf defines the authentication method required
I Not every IP range might have the same security requirements
I Many authentication methods available

I trust, reject, md5, password, gss, sspi, ident, peer, pam, ldap,
radius, cert

I The first rule that matches will decide on the authentication
method

Hans-Jürgen Schönig

pg_hba.conf: An example

host all all 192.168.1.0/24 md5
host all all 192.168.1.43/32 reject

I In this case 192.168.1.43 will be allowed in with a password

Hans-Jürgen Schönig

Instance level

Hans-Jürgen Schönig

Users and roles

I PostgreSQL used to have “user”, “group”, “world”.
I Some years ago a role-based system has been introduced.
I Users, groups, and roles are more or less the same
I NOTE: Users live on the instance and not on the database level

Hans-Jürgen Schönig

LOGIN vs. NOLOGIN

I To log into the instance LOGIN permissions are needed.
I NOLOGIN roles are utilized to inherit permissions.
I Example:

CREATE ROLE warehouse NOLOGIN;
CREATE ROLE paul LOGIN;
GRANT warehouse TO paul;

Hans-Jürgen Schönig

Inheriting permissions

I In this example “paul” can do everything “warehouse” can do
I “paul” is allowed to log into the instance
I Users cannot log in as “warehouse”

Hans-Jürgen Schönig

Superusers

I During the setup process a superuser is created.
I The name of the superuser is not necessarily “postgres”.
I During initdb the UNIX user is cloned and used as name for

the superuser
I However, it is a good idea to have a superuser called “postgres”

(many people will rely on that)
I The SUPERUSER flag is boolean:

I There are no “almost” superusers.
I Simple permissions cannot be revoked from a superuser.

Hans-Jürgen Schönig

Database and schema

Hans-Jürgen Schönig

Database permissions

GRANT { { CREATE | CONNECT | TEMPORARY | TEMP }
[, ...] | ALL [PRIVILEGES] }
ON DATABASE database_name [, ...]
TO role_specification [, ...] [WITH GRANT OPTION]

I CREATE: Allows the creation of schemas
I CONNECT: Allows to establish connections

Hans-Jürgen Schönig

Schema permissions

GRANT { { CREATE | USAGE } [, ...] | ALL [PRIVILEGES] }
ON SCHEMA schema_name [, ...]
TO role_specification [, ...] [WITH GRANT OPTION]

I CREATE: Allows the creation of objects inside a schema
I USAGE: Allows to use objects inside a schema.

Hans-Jürgen Schönig

Table and column permissions

Hans-Jürgen Schönig

Table permissions (1)

GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE |
REFERENCES | TRIGGER }
[, ...] | ALL [PRIVILEGES] }
ON { [TABLE] table_name [, ...]

| ALL TABLES IN SCHEMA schema_name [, ...] }
TO role_specification [, ...] [WITH GRANT OPTION]

Hans-Jürgen Schönig

Table permissions (2)

I SELECT: Allows users to read
I INSERT: Allows insertions (does not imply SELECT)
I UPDATE: Allows updating
I DELETE: Allows the deletion of rows
I TRUNCATE: A separate permission is available (because of the

table lock needed)
I REFERENCE: Needed to create a foreign key constraint
I TRIGGER: Allows the creation of a trigger

Hans-Jürgen Schönig

Displaying permissions (1)

I \dp displays permissions in psql

rolename=xxxx -- privileges granted to a role
=xxxx -- privileges granted to PUBLIC

r -- SELECT ("read")
w -- UPDATE ("write")
a -- INSERT ("append")
d -- DELETE
D -- TRUNCATE
x -- REFERENCES
t -- TRIGGER

Hans-Jürgen Schönig

Displaying permissions (2)

X -- EXECUTE
U -- USAGE
C -- CREATE
c -- CONNECT
T -- TEMPORARY

arwdDxt -- ALL PRIVILEGES (for tables,
varies for other objects)

* -- grant option for preceding privilege

/yyyy -- role that granted this privilege

Hans-Jürgen Schönig

Making it work

I To use permissions successfully, run the following commands:

REVOKE ALL ON SCHEMA public FROM public;
REVOKE ALL ON DATABASE test FROM public;

I Otherwise everybody can connect and everybody can create
objects inside the public schema.

Hans-Jürgen Schönig

Additional levels of security

Hans-Jürgen Schönig

Security barrier views

I PostgreSQL is allowed to reorder restrictions during executions
I If views are used to manage permissions, this is not always

possible
I security_barrier can help to avoid security leaks

Hans-Jürgen Schönig

The core problem (1)

CREATE TABLE person (id int, gender boolean);
CREATE VIEW girls AS SELECT *

FROM person
WHERE gender = 'f';

SELECT * FROM girls WHERE func(id) = 10;

Hans-Jürgen Schönig

The core problem (2)

I func(id) = 10 is the better filter than gender = ‘f’
I PostgreSQL will use the more selective filter first
I What if the procedure yields a debug message containing data?
I If func(id) = 10 is called for a man, this returns secret data
I This will fix the leak:

CREATE VIEW girls WITH (security_barrier = true)
AS SELECT ...

Hans-Jürgen Schönig

Future: Row Level Security

I In 9.5 PostgreSQL will support RLS (Row Level Security)
I It allows to hide rows from a user

Hans-Jürgen Schönig

Practice

I Slides: https://goo.gl/xdizp9
I Create 2 users that are able to log in (u1, u2).
I Revoke permissions from PUBLIC on database and schema
“public”.

I Create schema s1 and allow access with admin option to u1.
I Log in as u1 and create table s1.t1.
I Log in as u2 and verify that can’t read s1.t1
I Grant access to u2 on s1 and s1.t1, check that it works.

Hans-Jürgen Schönig

	Introduction
	Instance level
	Database and schema
	Table and column permissions
	Additional levels of security

