Hans-Jiirgen Schonig

«O> «Fr < [R > Q>
Hans-Jiirgen Schénig

Introduction

=] = = = A
Hans-Jiirgen Schénig

PostgreSQL security CYBERTE&
'ITuthslngSOLDa&eh:/

» PostgreSQL allows to configure various layers of security

» The permission system has been improved over the years

=] = = = A
Hans-Jiirgen Schénig

oresTes,.

=g

» Adjust listen_addresses in postgresql.conf to turn the network
on / off

» Add your OWN IP addresses

> listen_adresses defines, which of your interfaces PostgreSQL
will consider

> A restart is required

[} = = QA

Hans-Jiirgen Schénig

Adjusting pg__hba.conf

radius, cert

» pg_hba.conf defines the authentication method required

» Not every IP range might have the same security requirements
» Many authentication methods available

> trust, reject, mdb, password, gss, sspi, ident, peer, pam, Idap,
method

» The first rule that matches will decide on the authentication

=] = = = A
Hans-Jiirgen Schénig

host all all
host all all

pg_hba.conf: An example CY@E&LEEQ&
=g

192.168.1.0/24 md5
192.168.1.43/32 reject
> In this case 192.168.1.43 will be allowed in with a password

=] = = = A
Hans-Jiirgen Schénig

Instance level

=] = = = A
Hans-Jiirgen Schénig

Users and roles CYBERTE&
mpwgmmmm:.;//

v

PostgreSQL used to have “user”, “group”, “world".
» Some years ago a role-based system has been introduced.

Users, groups, and roles are more or less the same

v

v

NOTE: Users live on the instance and not on the database level

[} = = QA

Hans-Jiirgen Schénig

LOGIN vs. NOLOGIN CYBERT

;|
=
» To log into the instance LOGIN permissions are needed.
» NOLOGIN roles are utilized to inherit permissions.
> Example:

CREATE ROLE warehouse NOLOGIN;
CREATE ROLE paul LOGIN;

GRANT warehouse TO paul;

o = = = A
Hans-Jiirgen Schénig

Inheriting permissions

> In this example “paul” can do everything “warehouse” can do
> “paul” is allowed to log into the instance
> Users cannot log in as “warehouse”

=] = = = A
Hans-Jiirgen Schénig

Superusers CYBERT_E(’i'&}k
lTvsF‘cMngSDLDA@:I;/’/

» During the setup process a superuser is created.

» The name of the superuser is not necessarily “postgres”.

» During initdb the UNIX user is cloned and used as name for
the superuser

» However, it is a good idea to have a superuser called “postgres”
(many people will rely on that)

» The SUPERUSER flag is boolean:

» There are no “almost” superusers.
» Simple permissions cannot be revoked from a superuser.

o 5 = = DA

Hans-Jiirgen Schénig

Database and schema

=] = = = A
Hans-Jiirgen Schénig

L, ...1]

GRANT { { CREATE | CONNECT | TEMPORARY | TEMP }

E&
=
| ALL [PRIVILEGES] }

ON DATABASE database_name [,
TO role_specification [,

]
» CREATE: Allows the creation of schemas

..] [WITH GRANT OPTION]

=] = = = A
Hans-Jiirgen Schénig

» CONNECT: Allows to establish connections

;|
=

GRANT { { CREATE | USAGE } [, ...] | ALL [PRIVILEGES] }

ON SCHEMA schema_name [, ...]

TO role_specification [,

» CREATE: Allows the creation of objects inside a schema

..] [WITH GRANT OPTION]
» USAGE: Allows to use objects inside a schema.

o = = = A
Hans-Jiirgen Schénig

Table and column permissions

=] = = = A
Hans-Jiirgen Schénig

Table permissions (1)

cv@éﬁgmgﬂ&
=g

GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE |
REFERENCES | TRIGGER }

[, ...] | ALL [PRIVILEGES] }

ON { [TABLE] table_name [, ...]

| ALL TABLES IN SCHEMA schema_name [,
TO role_specification [,

.1}
...]1 [WITH GRANT OPTION]

o 5 = = DA

Hans-Jiirgen Schénig

Table permissions (2) CYBERTEQK
MMgmmmL/

SELECT: Allows users to read

INSERT: Allows insertions (does not imply SELECT)
UPDATE: Allows updating

DELETE: Allows the deletion of rows

TRUNCATE: A separate permission is available (because of the
table lock needed)

» REFERENCE: Needed to create a foreign key constraint
» TRIGGER: Allows the creation of a trigger

vV v v VvYYy

o 5 = = DA

Hans-Jiirgen Schénig

Displaying permissions (1) CYBERTEC&}K
nupqggmsmum:-;/

» \dp displays permissions in psql

rolename=xxxx —— prwvileges granted to a Tole
=xXXx ——- privileges granted to PUBLIC

-—- SELECT ("read")
-- UPDATE ("write")
—-— INSERT ("append")

DELETE

—-— TRUNCATE

—-— REFERENCES

-—- TRIGGER

XM O 5 K
|
|

o 5 = = DA

Hans-Jiirgen Schénig

Displaying permissions (2) CYBERTE \

=g
X -- EXECUTE
U —- USAGE
C —— CREATE
¢ —— CONNECT
T -- TEMPORARY
arwdDxt -- ALL PRIVILEGES (for tables,
varies for other objects)
* —-— grant option for preceding privilege
/yyyy —-- role that granted this privilege
=] = = = = 9ace

Hans-Jiirgen Schénig

)

» To use permissions successfully, run the following commands
REVOKE ALL ON SCHEMA public FROM public;

REVOKE ALL ON DATABASE test FROM public;

» Otherwise everybody can connect and everybody can create
objects inside the public schema.

o = = = A
Hans-Jiirgen Schénig

Additional levels of security

=] = = = A
Hans-Jiirgen Schénig

Security barrier views

» PostgreSQL is allowed to reorder restrictions during executions

> If views are used to manage permissions, this is not always
possible

> security__barrier can help to avoid security leaks

=] F

DA

Hans-Jiirgen Schénig

The core problem (1)

person
WHERE gender

cvﬁgm,&
=g
CREATE TABLE person (id int, gender boolean);
CREATE VIEW girls AS SELECT =*
FROM

lfl;
SELECT * FROM girls WHERE func(id) = 10;

o = = = A
Hans-Jiirgen Schénig

The core problem (2) CYBERTE&
mpmﬂmmm:.;//

v

func(id) = 10 is the better filter than gender = ‘f’

PostgreSQL will use the more selective filter first

v

v

What if the procedure yields a debug message containing data?

v

If func(id) = 10 is called for a man, this returns secret data
This will fix the leak:

v

CREATE VIEW girls WITH (security_barrier = true)
AS SELECT ...

o 5 = = DA

Hans-Jiirgen Schénig

Future: Row Level Security CYBERTE(Z&}K
'ITuthslngSOLDa&eh:/

» |t allows to hide rows from a user

> In 9.5 PostgreSQL will support RLS (Row Level Security)

=] = = = A
Hans-Jiirgen Schénig

=g

v

Slides: https://goo.gl/xdizp9

» Create 2 users that are able to log in (ul, u2).

Revoke permissions from PUBLIC on database and schema
“public”.

Create schema sl and allow access with admin option to ul.
Log in as ul and create table sl.t1.

Log in as u2 and verify that can’t read sl.tl

Grant access to u2 on sl and sl.t1, check that it works.

v

vV vy VvYyy

o 5 = = DA

Hans-Jiirgen Schénig

	Introduction
	Instance level
	Database and schema
	Table and column permissions
	Additional levels of security

