Hans-Jiirgen Schonig

4
www.postgresql-support.de
postgresql-supp S -
Hans-Jiirgen Schénig
www.postgresql-support.de

About Cybertec

Hans-Jiirgen S

Www.postgresq

DA

Cybertec: The PostgreSQL Company CYBERTECQx
7

» We provide

> 24x7 support for PostgreSQL
» professional training

> PostgreSQL consulting

> PostgreSQL high-availability

Hans-Jiirgen Schénig
www.postgresql-support.de

Scope of this training

Hans-Jiirgen Schénig

www.postgresql-support.de

DA

=g

How to detect performance problems
Tracking down slow queries

Hunting 1/O problems

Optimizing postgresql.conf for speed
Optimizing storage

Finding slow stores procedures
Trading durability for speed

vV vV vV vV VY VYY

o 5 = = DA

Hans-Jiirgen Schénig
www.postgresql-support.de

Gather data

Hans-Jiirgen Scl

g
www.postgresql-support.de

DA

pg_stat_statements: A must for everybody

» To stress this point:

» Finding performance problems is impossible without data
» No data, no improvements

> pg_stat_statements is the best way to approach the problem

=] = = = A
Hans-Jiirgen Schénig
www.postgresql-support.de

Installing pg_stat_statements

» adjust postgresql.conf:
shared_preload_libraries

'pg_stat_statements'
> restart the database

» create the extension in your database of choice
CREATE EXTENSION pg_stat_statements;

=] = = = A
Hans-Jiirgen Schénig
www.postgresql-support.de

Finding relevance (1) CYBERTE&
mpmﬂmmm:.;//

» NEVER EVER read pg_stat_statements without ordering the
table

» People tend to get stuck and inspect irrelevant data
» ORDER BY:

» total_time DESC
» calls DESC

> 1/0 timing, etc.

» Consider building a view

http://www.cybertec.at/2015/10/pg_stat_statements-the-way-i-
like-it/

m]

& =

A
Hans-Jiirgen Schénig
www.postgresql-support.de

Finding relevance (2)

» Work top down

» The 10th row can by definition not contribute more than 10%
to the overall problem

» Try to reduce the amount of information you are looking at

=] F

A
Hans-Jiirgen Schénig
www.postgresql-support.de

Configuring pg_stat_statements (1)

» Queries might be cut off

» Especially relevant to Java developers
> Raise ...

track_activity_query_size

» ORMs tend to produce insanely long SQL statements

1024
o = = = A
Hans-Jiirgen Schénig
www.postgresql-support.de

Configuring pg_stat_statements (2)

» pg_stat_statements.max: How many statements are tracked?
statistics across server shutdowns.

> pg_stat_statements.save: Specifies whether to save statement

=] = = = A
Hans-Jiirgen Schénig
www.postgresql-support.de

Resetting data

oveerTEG:)

=g

SELECT pg_stat_statements_reset();

Hans-Jiirgen Schénig

www.postgresql-support.de

DA

pg_stat_statements: Overhead

Use at least PostgreSQL 9.2

Older versions are basically not usable

Overhead of new versions can be seen as “noise”
The module can always be activated

Having no data is ways more expensive

vV v v Vv Yy

u}
o)
I
i
it
)
»
i)

c
www.postgresq|l-

)

=g

» CPU consumption can be measured easily

» By default pg_stat_statements does not show disk wait
» Consider activating track_io_timing

> It is off by default

» Overhead can be substantial

=] = = = A
Hans-Jiirgen Schénig
www.postgresql-support.de

orees,|

=g

iMac:~ hs$ pg_test_timing
Testing timing overhead for 3 seconds.
Per loop time including overhead: 38.28 nsec
Histogram of timing duratioms:
< usec % of total count

1 96.21594 75400031

2 3.78017 2962348

4 0.00016 123

=] = = = = 9ae

Hans-Jiirgen Schénig
www.postgresql-support.de

pg_test_timing: Considerations

v

Values between 14 and 1900 nsec have been observed

Virtualization can be a speed killer

v

v

Consider: Time has to be checked millions of times

v

When track_io_timing is on blk_read_time and
blk_write__time will contain data.

v

[/O time can be compared to CPU time in this case

o 5 = = DA

Hans-Jiirgen Schénig
www.postgresql-support.de

Inspecting queries

Hans-Jiirgen Schénig

www.postgresql-support.de

DA

orees,|

=g

» Once you have identified slow queries, check out how
PostgreSQL handles them

» EXPLAIN ANALYZE is the key to success
> Try to figure out, where time is burned
» Check for errors in those estimates

o 5 = = DA

Hans-Jiirgen Schénig
www.postgresql-support.de

Using EXPLAIN CYBERTE&

=g

test=# \h EXPLAIN
Command : EXPLAIN
Description: show the execution plan of a statement
Syntax:
EXPLAIN [(option [, ...])] statement
EXPLAIN [ANALYZE] [VERBOSE] statement
where option can be one of:
ANALYZE [boolean] VERBOSE [boolean]
COSTS [boolean] BUFFERS [boolean]
TIMING [boolean]

FORMAT { TEXT | XML | JSON | YAML }

=] = = = = 9ae

Hans-Jiirgen Schénig
www.postgresql-support.de

Check for missing indexes CYBERTE \

=g

» Before you look at

filesystem
RAID level
memory

>
>
>
> etc

» CHECK FOR MISSING INDEXES !!!

» will solve at least 60% of all common performance problems

[} = QA

Hans-Jiirgen Schénig
www.postgresql-support.de

A word of caution

» There is no such thing as “almost correct indexing"
» Doing too much too often

» No way to fix that with hardware

=] = = = A
Hans-Jiirgen Schénig
www.postgresql-support.de

> A single missing index can turn a perfect system in a nightmare

orees,|

=g

> Use our “miracle query”:

SELECT schemaname, relname, seq_scan, seq_tup_read,

seq_tup_read / seq_scan AS ratio, idx_scan
FROM pg_stat_user_tables
WHERE seq_scan > 0O

ORDER BY seq_tup_read DESC
LIMIT 15;

[} = QA

Hans-Jiirgen Schénig
www.postgresql-support.de

What to look for?

» Look for large tables scanned too often
» There will always be sequential scans
Small tables

Backups

Analytics

etc.

vy vV Vv Y

» Reading large tables too often is poison
» Reasonable sequential scans are perfectly fine

[} = = QA

Hans-Jiirgen Schénig
www.postgresql-support.de

A classical example CYBERTE \
'ITuthslngSOLDa&eh:/

» Can you see the problem?

CREATE TABLE t_user

(
id serial PRIMARY key,
username text,
passwd text

)

CREATE TABLE

Hans-Jiirgen Schénig
www.postgresql-support.de

Prevent “over indexing”

» Too many indexes will slow down writes
» Indexing everything is also bad
> Look for indexes, which are never used

Hans-Jiirgen S
www.postgresq

Finding pointless indexes CYBERTE(&}k
MMgmmmL/

SELECT relname, indexrelname, idx_scan,
pg_relation_size(indexrelid),
sum(pg_relation_size(indexrelid))

OVER (ORDER BY idx_scan, indexrelid)

FROM pg_stat_user_indexes

ORDER BY 3;

» Real work problem seen at a client: 74% of disk space was
occupied by indexes, which were NEVER used (= 0 times)
» It ruined performance completely

Hans-Jiirgen Schénig
www.postgresql-support.de

Looking for wrong estimates CYBERT

test=# explain (analyze true, verbose true)

Eﬁ&
—g
SELECT count(*) FROM generate_series(1l, 1000000);
QUERY PLAN
Aggregate (cost=12.50..12.51 rows=1 width=8)
(actual time=233.053..233.053 rows=1 loops=1)
Output: count (*)

(7 rows)

(actual time=84.598..174.208 rows=1000000 loops=1)
Function Call: generate_series(1l, 1000000)
o F = = DA
www.postgresql-support.de

-> Function Scan on generate_series
(cost=0.00..10.00 rows=1000)

What we see CYBERTECQ\
'ITuthslngSOLDa&eh:l;/

Estimates are ways off (due to the function call)
PostgreSQL can (in most cases) not look into functions
Various execution times are shown

HINT: Try to see, where time “jumps”

vV v vy

[} = QA

Hans-Jiirgen Schénig
www.postgresql-support.de

Startup costs. vs. total costs

» Startup costs: When does this node yield the first row.
» Total costs: How long does it take to produce the last row.

Hans-Jiirgen Schénig
www.postgresql-support.de

Adjusting costs

The cost model can be adjusted
PostgreSQL provides various parameters to do that

However, it requires a deep understanding of what is going on
Be aware of side effects

vV v vy

o 5 = = DA

Hans-Jiirgen Schénig
www.postgresql-support.de

Best parameters to adjust |/O costs

> seq_page_cost: Adjust costs of sequential reads

» random__page_cost: Cost to read a random block
> On SSDs the default can be changed from 4 to 1 to adjust for
low seek times

» effective_cache_size: Tells the optimizer about how much
RAM to expect

» Keep in mind: The consequences can be “unexpected” in some
cases
=] =

A
Hans-Jiirgen Schénig
www.postgresql-support.de

Nested loops: My favorite pitfall (1)

oveerTEG:)

=g
» What a nested loop does
for x in a:

for y in b:
if

X == y:
yield row

Hans-Jiirgen Schénig

www.postgresql-support.de

DA

Nested loops: My favorite pitfall (2)

» What happens if the nested loop is underestimated?
» What are the symptoms?

cvﬁgmﬁ&
=

» CPU will go through the roof

> Runtime might vary A LOT depending on input parameters

» Changes might occur sudden

» Try and see what changes:

SET enable_nestloop TO off;

» This is pretty advanced already

o = = = A
Hans-Jiirgen Schénig
www.postgresql-support.de

Exercise:

» Where is the planner wrong?

SELECT * FROM pg_stats;

=] = = = A
Hans-Jiirgen Schénig
www.postgresql-support.de

» Run the following query and tell me where it might go wrong
» Is it a problem or not?

Exercise: Remarks . ..

» There are no statistics for the output of functions
> PostgreSQL has to make static assumptions
» This can fool the planner

» Wrong estimates can lead to unexpected stuff.

o 5 = = DA

Hans-Jiirgen Schénig
www.postgresql-support.de

Function statistics (1)

test=# explain SELECT x*

cvﬁgmﬁ&
—g
FROM generate_series(l, 10000000) AS x WHERE x < 0;
QUERY PLAN
Function Scan on generate_series x
Filter:

(cost=0.00..12.50 rows=333 width=4)
(x < 0)

=] = = = A
Hans-Jiirgen Schénig
www.postgresql-support.de

Function statistics (2)

test=# explain SELECT x*

cvﬁgmﬁ&
—g
FROM generate_series(l, 10000000) AS x WHERE x > 0;
QUERY PLAN
Function Scan on generate_series x
Filter:

(cost=0.00..12.50 rows=333 width=4)
(x > 0)

=] = = = A
Hans-Jiirgen Schénig
www.postgresql-support.de

explain (buffers true, ...

» “buffers true” will tell us about the |/O behavior of the query

> You can also see that in pg_stat_statements

» The more buffers the query needs, the more runtime might
fluctuate (a query can easily be 100x slower or faster)

» Unstable runtime is often caused by unpredictable caching

» Low cache rates are not as bad for sequential scans as for index
scans

» Watch out for random |/O (= most expensive)

Hans-Jiirgen Schénig
www.postgresql-support.de

Buffers: Side note

“disk hits”

» Keep in mind that a cache miss does not necessarily mean
» The filesystem cache is there for you
“random” you are.

> Try to calculate average costs of a block to get an idea of how

=] = = = A
Hans-Jiirgen Schénig
www.postgresql-support.de

Hidden “performance” problems (1) CYBERTECQx
T

What is potentially wrong in the following example?

CREATE TABLE a (aid int);
CREATE TABLE b (bid int);

INSERT INTO a VALUES (1), (2), (3);
INSERT INTO b VALUES (2), (3), (4);

[} = QA

Hans-Jiirgen Schénig
www.postgresql-support.de

Hidden “performance” problems (2) CYBERTE \
T

» How many rows do you expect?

test=# SELECT =*
FROM a LEFT JOIN b
ON (aid = bid AND bid = 2);
aid | bid

(3 rows)

Hans-Jiirgen Schénig
www.postgresql-support.de

Hidden “performance” problems (3) CYBERTE&
T

v

This one comes hidden as performance problem but in fact it is
a logical problem

Aggregates might hide the logical mistake.

Watch out for outer joins

Most people do NOT know how to write them properly
Expect semantic errors (double check !)

o 5 = = DA

Hans-Jiirgen Schénig
www.postgresql-support.de

Obvious stuff: Unfortunately relevant

» Go to www.google.com and search for “USA”
» You will find millions of hits
» Google will tell you so

» However, not more than around 30 pages are really available
» Why does everybody else want an exact count?
problem

> Yes, this is an obvious thing

o = = = A
Hans-Jiirgen Schénig
www.postgresql-support.de

» Exact counting in search forms is a MAJOR performance

1/O bottlenecks

Hans-Jiirgen S

Www.postgresq

DA

oresTes,.

=g

» 10.000 INSERT statements (single transactions)

CREATE TABLE t_test (id int);

INSERT INTO t_test VALUES (1);
INSERT INTO t_test VALUES (1);

INSERT INTO t_test VALUES (1);

[m] = = =

DA

Hans-Jiirgen Schénig
www.postgresql-support.de

COMMIT: The impact of disk flushes CYBERT

EC
» Depending on your hardware runtime might fluctuate

2

=g

» we have seen 1 sec - 3 minutes 50 seconds
» CPU is not the problem here

» Remember: On COMMIT PostgreSQL has to flush to disk

» Copying large files to measure throughput is pointless

o = = = A
Hans-Jiirgen Schénig
www.postgresql-support.de

Testing disk flushes: pg_test_fsync

» Can help to see, how your /O system behaves
» Easy to use

iMac:~ hs$ pg_test_fsync —-help

Usage: pg_test_fsync [-f FILENAME] [-s SECS-PER-TEST]

=] = = = A
Hans-Jiirgen Schénig
www.postgresql-support.de

Trading speed for durability

» synchronous_commit tells PostgreSQL what to do on
COMMIT

» on: Flush EVERY transaction to disk. No data is lost after a
crash. Major performance bottleneck for small transactions.

» off: Introduces a potential window of data loss (= 3 x
wal_writer_delay). This is fine for many applications. Pointless
if your transactions are large.

» commit_delay: Tells a session to wait hoping that other
transactions will commit at the same time. The idea is to save
on disk flushes

Hans-Jiirgen Schénig
www.postgresql-support.de

commit_delay: Grouping COMMITs

WAL

» Wait for a couple of microseconds before really flushing the

> It is a synchronous method to commit transactions

» Makes sense if you have many concurrent transactions

=] = = = A
Hans-Jiirgen Schénig
www.postgresql-support.de

commit_siblings: Ensuring concurrency

» Minimum number of concurrent open transactions required
before using the commit_delay setting.
» Feel free to experiment.

> |t can be hard to set this parameter “correctly” as concurrency
and transaction sizes might vary.

Hans-Jiirgen S

www.postgresq

Reducing 1/0: Transaction log bypasses CYBERT

;|
=
> There are ways to bypass the PostgreSQL transaction log in
some cases
» Two major features:

» CREATE UNLOGGED TABLE
» Specially designed transactions

=] = = = A
Hans-Jiirgen Schénig
www.postgresql-support.de

CREATE UNLOGGED TABLE CYBERTE \

=
> Ideal for staging table
» The table can be used just like any other table
» Will reduce I/O significantly (no WAL written)
» Downsides:
» Table is guaranteed to be empty in case the server crashes
o = E E DA

Hans-Jiirgen Schénig
www.postgresql-support.de

Designing transactions for the WAL bypass CYBERTECQ‘K
M

BEGIN;

CREATE TABLE casel (....);
COPY casel FROM ...
COMMIT;

BEGIN;
TRUNCATE case2 ...
COPY case2 FROM ..
COMMIT;

*

u}
o)
1
n
it

DA

Hans-Jiirgen Schénig

www.postgresql-support.de

WAL-bypass: casel

» Flush the table at the end of the transaction
» Nobody but you can see the table

» Just flush the data file

=] = = = A
Hans-Jiirgen Schénig
www.postgresql-support.de

» Concurrency is not the issue here

WAL-bypass: case2

» TRUNCATE puts a file in quarantine

=g

» Data file will be needed on rollback

oveerTEG:)
» Data file will be removed from disk on commit
» TRUNCATE creates a table lock

» No concurrency
> At the end:

» Flush the new table file or
» Take the old data file
WAL

» There is never a case requiring files to be repaired using the
=] = = = A
Hans-Jiirgen Schénig
www.postgresql-support.de

Using tablespaces

» Adding tablespaces only makes sense if you add hardware to
the system.

» Having 10 tablespaces on the same disk is pointless

» Splitting up WAL, data, and indexes can make sense

» Same rules apply for most database systems

[} = =

= A
Hans-Jiirgen Schénig
www.postgresql-support.de

Tablespaces and parallel queries

» Tablespaces will be even more useful as parallel queries take off
» Scaling up 1/O can be a major issue in analytics

Hans-Jiirgen S
www.postgresq

Choosing a filesystem CYBERT

;|
=
» XFS and ext4 are absolutely fine.

» Avoid COW (= Copy-On-Write) filesystems

» btfs and alike are NOT GOOD for database work
> 1/0O tends to be too random
indexing

» EXPERIENCE: Before blaming the filesystem, consider fixing

o = = = A
Hans-Jiirgen Schénig
www.postgresql-support.de

Improving the |/O configuration

> PostgreSQL cannot keep the transaction log forever
» At some point it has to be recycled

» To recycle WAL PostgreSQL has to ensure that data has safely
reached the data files:

» So called “checkpoints” are here to ensure that

» Checkpoint distances, etc. can be configured

o 5 DA

Hans-Jiirgen Schénig
www.postgresql-support.de

Checkpoint settings (1)

» min_wal_size: If WAL disk usage is below this value, old WAL
is recycled and not removed.

» max_wal_size: Maximum size of the WAL (soft limit). This
can have an impact on recovery times after a crash

> checkpoint_timeout: Maximum time between two checkpoints

[} = QA

Hans-Jiirgen Schénig
www.postgresql-support.de

Checkpoint settings (2)

frequently.

» Checkpointing too often is not risky

» checkpoint_warning: Tells us that the server checkpoints too

> It “only” leads to bad performance

» Can happen during bulk loading, etc.
checkpoints.

» Do you want short or long checkpoints?

> It is mostly about flattening I/O spikes
=] = = = nae
Hans-Jiirgen Schénig
www.postgresql-support.de

» checkpoint__completion_target: Fraction of total time between

General advise

» Checkpointing too frequently is bad for performance
» Long checkpoint distances lead to longer recovery on startup
» If you have a LOT of memory:

» Adjust kernel settings (vm.dirty_ratio, etc.)

» PostgreSQL 9.6 has some onboard means to handle a lot with
onboard variables

» Older versions need some more adjustments on the kernel side

Hans-Jiirgen Schénig
www.postgresql-support.de

Linux kernel settings (1):

» vm.dirty_background_ratio: is the percentage of system
memory that can be filled with “dirty” pages before pdflush,
etc. kick in

» vm.dirty_ratio: is the absolute maximum amount of system
memory that can be filled with dirty pages before everything
must get committed to disk

» vm.dirty__background_bytes and vm.dirty_ bytes are another
way to specify these parameters. If you set the bytes version
the ratio version will become 0, and vice-versa.

Hans-Jiirgen Schénig
www.postgresql-support.de

Linux kernel settings (2):

cv@éﬁggﬂ&
=g

» vm.dirty_expire_centisecs is how long (3000 = 30 seconds)
data can be in cache before it has to be written. When the
pdflush /flush /kdmflush processes kick in they will check to see

how old a dirty page is, and if it's older than this value it'll be
written asynchronously to disk.

[} = =

DA

Hans-Jiirgen Schénig
www.postgresql-support.de

Adjusting memory parameters

Hans-Jiirgen Schénig

www.postgresql-support.de

DA

Adjusting memory parameters:

» The following memory parameters will need a review:

shared__buffers
work__mem
maintenance_work_mem
wal__buffers

temp_ buffers
effective_cache_size

vy vV VvV VY VY

u}
o)

I

i
it
)
»
i)

Hans-Jiirgen S

www.postgresq

shared_buffers: The PostgreSQL 1/O cache CYBERTECQK

=g

Memory is allocated on startup and never resized

25 - 40% of system memory

Correct value depends on workload

Use larger values in case of large checkpoint distances
PostgreSQL relies on filesystem caching as well

HINT: DO NOT use too much

» High values can turn against you
» Rule of thumb: max. 8-16GB

vV vV vV v VY Y

o 5 = = DA

Hans-Jiirgen Schénig
www.postgresql-support.de

work_mem

cvﬁgmﬁ&
=
> Used by operations such as sorting, grouping, etc.

» It is a local value - not a global one

=] = = = A
Hans-Jiirgen Schénig
www.postgresql-support.de

» Will be allocated on demand (per operation)

work_mem in action (1):

cv@éﬁggﬂ&
=g

CREATE TABLE t_test (id serial, name text);
INSERT INTO t_test (name)

SELECT 'hans' FROM generate_series(1l, 100000);
INSERT INTO t_test (name)

SELECT 'paul' FROM generate_series(1l, 100000);
ANALYZE;

[} = =

DA

Hans-Jiirgen Schénig
www.postgresql-support.de

work_mem in action (2):

oveerTEG:)
—g
test=# explain SELECT name, count(x)
FROM t_test GROUP BY 1;
QUERY PLAN
HashAggregate (
Group Key: name

rows=2 width=13)
-> Seq Scan on t_test

(..

. rows=200000 width=5)
=] = = = A
Hans-Jiirgen Schénig
www.postgresql-support.de

(3 rows)

work_mem in action (3):

CYBERTEC \
—g
test=# explain SELECT id, count (*)
FROM t_test GROUP BY 1;
QUERY PLAN
GroupAggregate

Group Key: id

(... rows=200000 width=12)
-> Sort (..
Sort Key: id

rows=200000 width=4)
-> BSeq Scan on t_test
(...
(5 rows)

rows=200000 width=4)
=] = = = A
Hans-Jiirgen Schénig
www.postgresql-support.de

work_mem in action (4):

SET work_mem TO 'l GB';

cvﬁgmﬁ&
=

explain SELECT id, count(*) FROM t_test GROUP BY 1;

QUERY PLAN

HashAggregate (

Group Key: id

-> Seq Scan on t_test
(3 rows)

(..

. rows=200000 width=4)
=] = = = A
Hans-Jiirgen Schénig
www.postgresql-support.de

rows=200000 width=12)

work_mem in action (5):

» work__mem will also speed up sorting
» if data does not fit into work_mem, PostgreSQL has to go to
disk, which is expensive

Hans-Jiirgen Schénig
www.postgresql-support.de

orerTes,.
The PostgreSQL Dar.ah:/

» The same as work_mem but used for administrative tasks such
as

CREATE INDEX
ALTER TABLE
VACUUM

etc.

v v vy

Hans-Jiirgen Schénig
www.postgresql-support.de

temp__buffers

cv@éﬁggﬂ&
=g

> Sets the maximum number of temporary buffers used by each
database session.

» These are session-local buffers used only for access to
temporary tables.

[} = =

A
Hans-Jiirgen Schénig
www.postgresql-support.de

wal__buffers

» Usually auto-tuned

» Defines the amount of shared memory used to store unwritten
WAL

» Historically this was 64kb, which caused SERIOUS performance
issues

» Consider using 16MB+

» Extremely large values are not beneficial, however (but not
counterproductive either)

o 5 = = DA

Hans-Jiirgen Schénig
www.postgresql-support.de

effective__cache_size

» The operating system caches too

» Telling PostgreSQL about the total amount of memory in your
system makes sense

» 1/0 estimates for index pages can be adjusted by the planner
» Rule of thumb: 70% of total RAM

o 5 = = DA

Hans-Jiirgen Schénig
www.postgresql-support.de

Stored procedures

Hans-Jiirgen Schénig

www.postgresql-support.de

DA

Tracking down slow stored procedures

» Stored procedures can be a major performance bottleneck
» Fortunately PostgreSQL provides us with runtime statistics

» Consider setting track_function = ‘all’ in postgresql.conf

=] = = = A
Hans-Jiirgen Schénig
www.postgresql-support.de

Inspecting pg_stat_user_functions

test=# \d pg_stat_user_functions
View "pg_catalog.pg_stat_user_functions"

Column | Type | Modifiers
____________ e e
funcid | oid |
schemaname | name |
funcname | name |
calls | bigint |
total_time | double precision |
| |

self_time double precision

[} = QA

Hans-Jiirgen Schénig
www.postgresql-support.de

total__time vs. self_time

> A function can have high total_time but low self_time
» Usually wrapper functions
» Focus more on self_time

» Time is really lost in those functions

c
www.postgresq|l-

Frequent causes of slow functions

» By default functions are VOLATILE

» Functions might be called too often in this case

» Consider using:
» STABLE: The function will return the same value given the
same parameters inside a transaction.

» IMMUTABLE: The function will always return the same value
given the same input regardless of the transaction

» Examples: random() is volatile, now() is “stable”, pi() and
cos(x) are “immutable”

Hans-Jiirgen Schénig
www.postgresql-support.de

SELECT * FROM tab WHERE value

= random() ;
SELECT * FROM tab WHERE value = now();
SELECT * FROM tab WHERE value = pi();

» The first query CANNOT use indexes
» Can be a MAJOR performance bottleneck (!)
> The 2nd and 3rd query can

[} = = =

Hans-Jiirgen Schénig
www.postgresql-support.de

Contact

Hans-Jiirgen Scl

g
www.postgresql-support.de

DA

=g

Cybertec Schénig & Schénig GmbH
Grohrmihlgasse 26

A-2700 Wiener Neustadt
Austria

Website: www.postgresql-support.de

Follow us on Twitter: QPostgresSupport, postgresql_007

[} = = QA

Hans-Jiirgen Schénig
www.postgresql-support.de

	About Cybertec
	Scope of this training
	Gather data
	Inspecting queries
	I/O bottlenecks
	Adjusting memory parameters
	Stored procedures
	Contact

