
PostgreSQL: Transactions

Hans-Jürgen Schönig

November 9, 2015

Hans-Jürgen Schönig
November 9, 2015

Introduction

Hans-Jürgen Schönig
November 9, 2015

PostgreSQL transactions

I PostgreSQL uses the ACID transaction model:

I Atomic
I Consistent
I Isolated
I Durable

I All transactions are ACID compliant

Hans-Jürgen Schönig
November 9, 2015

The transaction model

I A transaction has to complete or it will fail entirely.

I The basic principle: Everything or nothing

I Other databases such as Oracle use different models
I Oracle can commit partially correct transactions
I This requires more error handling

Hans-Jürgen Schönig
November 9, 2015

An example (1)

test=# BEGIN;

test=# SELECT 1;

...

test=# SELECT 1 / 0;

ERROR: division by zero

test=# SELECT 1 / 0;

ERROR: current transaction is aborted, commands

ignored until end of transaction block

test=# SELECT 1 / 0;

ERROR: current transaction is aborted, commands

ignored until end of transaction block

test=# COMMIT;

ROLLBACK

Hans-Jürgen Schönig
November 9, 2015

An example (2)

I After the error the transaction can only ROLLBACK
I All commands will be ignored
I A transaction has to be correct

Hans-Jürgen Schönig
November 9, 2015

Using savepoints

I Savepoints can help to avoid errors.
I Savepoints live inside a transaction
I You can return to any savepoint inside a transaction

test=# \h SAVEPOINT

Command: SAVEPOINT

Description: define a new savepoint within the

current transaction

Syntax:

SAVEPOINT savepoint_name

Hans-Jürgen Schönig
November 9, 2015

ROLLBACK TO SAVEPOINT

test=# \h ROLLBACK TO SAVEPOINT

Command: ROLLBACK TO SAVEPOINT

Description: roll back to a savepoint

Syntax:

ROLLBACK [WORK | TRANSACTION] TO

[SAVEPOINT] savepoint_name

Hans-Jürgen Schönig
November 9, 2015

Transaction time

I Time inside a transaction is “frozen”

I now() will return the same time inside a transaction

I This is important to know:

DELETE FROM data WHERE field < now();

I If now() was not constant, the result would be more or less
random

Hans-Jürgen Schönig
November 9, 2015

Locking and concurrency

Hans-Jürgen Schönig
November 9, 2015

Locking

I In case of concurrent transactions locking is essential

I Otherwise the behavior of the database would be
unpredictable

I PostgreSQL tries to minimize locking as much as possible

I When possible no locks or fine grained row locks are used

Hans-Jürgen Schönig
November 9, 2015

Rules

I A transaction is only seen by others once it has been
committed.

I A transaction can see its own changes.
I Modified rows are locked and can only be changed by one

person at a time.
I Data is persisted by COMMIT
I ROLLBACK is virtually free
I SELECTs and data changes can coexist

Hans-Jürgen Schönig
November 9, 2015

Rules

I If two transactions try to modify the same row, one has to
wait:

UPDATE data SET id = id + 1

I If 1000 people do this concurrently, the ID will be incremented
by EXACTLY 1000.

Hans-Jürgen Schönig
November 9, 2015

Safety (1)

I Is it safe?

BEGIN;

SELECT seat

FROM t_flight

WHERE flight = ’AB4711’

AND booked = false;

....

UPDATE t_flight

SET booked = true

WHERE seat = ...;

Hans-Jürgen Schönig
November 9, 2015

Safety (2)

I If two people do the same thing at the same time they would
overwrite each other

I Concurrency is the hidden danger here

I No locking is in place to protect users

I SELECT FOR UPDATE comes to the rescue

Hans-Jürgen Schönig
November 9, 2015

Safety (3)

I SELECT FOR UPDATE locks a row as if we would modify it
instantly.

I Concurrent writes have to wait until we commit or rollback.

I TIP: Use NOWAIT to make sure a transaction does not wait
forever. This is especially important on the web.

Hans-Jürgen Schönig
November 9, 2015

Safety (4)

I SELECT FOR UPDATE locks out concurrent writes.
I Sometimes not everybody wants the same row.
I Sometimes you are happy with any rows as long as you are

the only one touching it.

SELECT ...

FROM t_flight

WHERE flight = ’AB4711’

LIMIT 1

FOR UPDATE SKIP LOCKED;

Hans-Jürgen Schönig
November 9, 2015

Safety (5)

I SKIP LOCKED allows many people to book a flight at the
same time.

I Everybody will get his own row.

I SKIP LOCKED has been introduced in PostgreSQL 9.5

Hans-Jürgen Schönig
November 9, 2015

FOR UPDATE vs. FOR SHARE

I Sometimes FOR UPDATE is too harsh.

I A simple SELECT might be too weak.

I Consider: While you are looking at a row you want to make
sure that it is not removed. However, it is perfectly fine if two
people need the row at the same time.

Hans-Jürgen Schönig
November 9, 2015

A practical use cases

I Imagine you got two tables: Currency + Account.
I If you modify an account you want to make sure that the

currency is not removed while you change the account.
I The foreign key ensures that (internally a FOR SHARE

equivalent is used)

Hans-Jürgen Schönig
November 9, 2015

Dangerous locking (1)

SELECT ...

FROM currency AS c, account AS a

WHERE a.currency_id = c.id

AND a.id = ’4711’

FOR UPDATE;

I Which rows in which tables are locked?

Hans-Jürgen Schönig
November 9, 2015

Dangerous locking (2)

I In this case only one person at a time can draw money
I The entire currency is locked because of a single person.
I PostgreSQL cannot know what you are planning to change
I Therefore both sides of the join need locking

Hans-Jürgen Schönig
November 9, 2015

Dangerous locking (3)

I More fine grained locking:

SELECT ...

FROM currency AS c, account AS a

WHERE a.currency_id = c.id

AND a.id = ’4711’

FOR UPDATE OF a;

I Only accounts will be changed.
I Currency needs no locking

Hans-Jürgen Schönig
November 9, 2015

More options

I SELECT is ways more powerful:

[FOR { UPDATE | NO KEY UPDATE | SHARE | KEY SHARE }
[OF table_name [, ...]] [NOWAIT | SKIP LOCKED]

[...]]

Hans-Jürgen Schönig
November 9, 2015

Locking entire tables

I Entire tables can be locked

I PostgreSQL knows 8 types of locks

I The most important ones:

I ACCESS EXCLUSIVE: No reads, no writes
I EXCLUSIVE: Reads are ok, writes are blocked
I SHARE: Used by CREATE INDEX, writes are blocked
I ACCESS SHARE: Conflicts with DROP TABLE and alike

I Try to avoid table locks when possible

Hans-Jürgen Schönig
November 9, 2015

Transaction isolation

Hans-Jürgen Schönig
November 9, 2015

Transaction isolation

I In SQL transactions are isolated from each other

I Depending on the level of isolation the way data is seen
changes.

I The ANSI SQL standard defined 4 transaction isolation levels:

I READ UNCOMMITTED + READ COMMITED are the same
in PostgreSQL

I REPEATABLE READ (snapshot isolation, good for reporting)
I SERIALIZABLE (SSI transactions for even higher isolation)

Hans-Jürgen Schönig
November 9, 2015

READ COMMITTED (1)

I READ COMMITTED is the default isolation level
I A transaction can see the effect of committed transactions.

BEGIN;

SELECT sum(field) FROM tab;

returns 43

<-- concurrent write

SELECT sum(field) FROM tab;

returns 57

COMMIT;

Hans-Jürgen Schönig
November 9, 2015

READ COMMITTED (2)

I READ COMMITTED is bad for reporting

I Queries inside the transaction do not operate on the same
“snapshot”.

I Higher isolation is needed for reporting

Hans-Jürgen Schönig
November 9, 2015

REPEATABLE READ (1)

I The entire transaction will use the same snapshot.
I Visibility does not change inside the transaction.

BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;

SELECT ...

SELECT ...

COMMIT;

Hans-Jürgen Schönig
November 9, 2015

REPEATABLE READ (2)

I There is no performance penalty for REPEATABLE READ

I The only difference is that different rows are visible

I NOTE: This does not apply to SERIALIZABLE (it is
significantly slower)

Hans-Jürgen Schönig
November 9, 2015

SERIALIZABLE

I Transactions are separated even more.
I Consider the following example:

I We want to store prison guards
I Each prison should only have ONE guard at a time

I Of course this can be solved with LOCK TABLE
I However, LOCK TABLE does not scale beyond one CPU core

Hans-Jürgen Schönig
November 9, 2015

How SERIALIZABLE works

I PostgreSQL keeps track of data touched using predicate
locking

I Locking rows is not enough

I We also have to protect ourselves against future rows

I The main idea is to create the illusion that a user is alone

I However, behind the scenes things are as parallel as possible

I Conflicts can happen and transactions can be aborted

Hans-Jürgen Schönig
November 9, 2015

How to use SERIALIZABLE

I FOR UPDATE, LOCK TABLE, etc. are not needed anymore
I Users can write code without worrying about concurrency
I PostgreSQL will resolve conflicts automatically
I “Pivot transactions” are aborted

Hans-Jürgen Schönig
November 9, 2015

Additional considerations

Hans-Jürgen Schönig
November 9, 2015

Managing lock timeout

I lock timeout can be set to abort a statement if a lock is held
for too long.

I lock timeout is in milliseconds.

Hans-Jürgen Schönig
November 9, 2015

Deadlocks

I Transactions can fail due to deadlocks

I In case deadlocks happen, PostgreSQL will resolve them
automatically.

I The deadlock detection will kick in after deadlock timeout has
been reached.

I Deadlocks can happen regardless of the isolation level.

Hans-Jürgen Schönig
November 9, 2015

Tracking locks: pg locks

I pg locks can be used to check for pending locks

I Administrators can check, which transaction is waiting on
which transaction

I Rows level conflicts can even be observed at the row level
(page + tuple)

I In many cases it is easier to check the “waiting” flag in
pg stat activity

Hans-Jürgen Schönig
November 9, 2015

Sequences and transactions (1)

I Sequences cannot be rollbacked

test=# CREATE SEQUENCE seq_a;

test=# BEGIN;

test=# SELECT nextval(’seq_a’);

nextval

1

test=# ROLLBACK;

test=# SELECT nextval(’seq_a’);

nextval

2

Hans-Jürgen Schönig
November 9, 2015

Sequences and transactions (2)

I Never use sequences to assign numbers to business
transactions

I Gaps in your invoice numbers are not allowed
I Different means are needed

Hans-Jürgen Schönig
November 9, 2015

	Introduction
	Locking and concurrency
	Transaction isolation
	Additional considerations

