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Abstract 

 

We use real data from the Self-Monitoring, Analysis and Reporting Technology 
(S.M.A.R.T) of Hard Drive Disks to train a machine learning model and predict the 
probability of failure of a HDD. After comparing various models, including Random 
Forest, Naive Bayes, Nearest Neighbors among others, we came up with a high 
accuracy (area under the ROC curve = 0.78 ± 0.04) model, which is fast to train and to 
predict with. The data is particularly challenging, given that there is a high imbalance 
between positive and negative classes (positive/negative < 10−4), and there are few 
positive cases. A dimensionality reduction method is developed to retain only the useful 
attributes and avoid unnecessary calculations, shortening the training and testing 
times. 

We propose a smart implementation of the model to drastically reduce the number of 
HDD used to backup data, with a small increase in the risk of losing data. The model 
could be implemented with the help of PostgreSQL, to keep track of the S.M.A.R.T. 
metrics of the disks and trigger the necessary actions. Applying the model developed in 
this work, it is possible to lessen the number of backup disks by 50%, with a probability 
increase of only 9% to have a failure on non backed-up disks. 
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S.M.A.R.T. (Self-Monitoring, Analysis and Reporting Technology) is a monitoring system 
included in computer hard disk drives (HDDs) and solid-state drives (SSDs). Its primary 
function is to measure and save various indicators of drive reliability with the intent of 
anticipating imminent hardware failures. Several attributes are evaluated to keep track 
of the state of the disks. Some of this include: power cycle count, temperature, distance 
the disk has shifted relative to the spindle, resistance caused by friction in mechanical 
parts while operating, etc. It is not evident which categories indicate a imminent failure 
of the HDD, and which ones are uncorrelated with the health status of the disks. 
Unfortunately, the S.M.A.R.T attributes are not comparable among different 
manufacturers, or even different models from the same manufacturer. Although there 
is a standard for this attributes, implementations by different manufacturers still differ 
and in some cases may lack some basic features or only include a few selected 
attributes. Another common inconvenience of the S.M.A.R.T. technology is the difficulty 
to access the data, which depends on the hardware compatibility with the HDD and 
the operating system used. 

Typically, the data is organized in databases and PostgreSQL is becoming a very 
popular engine choice due to its advanced features and thanks to being an open 
source project. Postgres would be the natural choice to help implement this ML model, 
where the S.M.A.R.T. measurements can be stored, and it can easily interact with the 
python program developed in this work. To get the S.M.A.R.T. data out of the disks, a 
specific software must be used. For more information, see 
https://en.wikipedia.org/wiki/Comparison_of_S.M.A.R.T._tools. 

In this work, we developed a statistical model from a large dataset to identify the disks 
that fail. The data was taken from: https://www.backblaze.com/b2/hard-drive-test-
data.html, and the problem was inspired by a kaggle post: 
https://www.kaggle.com/backblaze/hard-drive-test-data. The data is 1.2GB, has 90 
columns (attributes) for 3179296 instances. Aside from the S.M.A.R.T data, there is 
available information such as date, serial number, model, capacity, and of course failure 
status. A value of 1 in the field “failure status” means a failed disk, while 0 is a healthy 
disk. 

To load the data from the comma separated file into a database, these are the steps to 
follow. First, connect to the running PostgreSQL server and then create the database 
where the data will live. 



 

Cybertec AUSTRIA  |  SWITZERLAND  |  ESTONIA  |  URUGUAY 

 

 
Then we have to fill the table with the data in the file. This can be easily achieved using 
COPY from the database: 

 
The NULL AS ’NA’ allows to import the missing values tagged with the string NA in the 
file, and convert them into NULL. Now the data is loaded into our Postgres database, 
and we can access it from within. For example, we ask which models have the most 
failed disks. 

# CREATE DATABASE hdd_smart ; 
CREATE DATABASE 

# \connect hdd_smart ; 
You are now connected to database “hdd_smart” as user “my_user”. 

# CREATE TABLE sma r t _me t r i c s 

( 
id serial NOT NULL , 
date date ,  
serial_number varchar(100) ,  
model varchar(100) ,  
capacity_bytes numeric ,  
failure int ,  
smart_1_normalized int , 
smart_1_raw numeric , 
… 
smart_255_raw numeric 
); 

CREATE TABLE 

# COPY smart_metrics(date,serial_number,model,capacity_bytes,…) 
FROM ‘ path/to/file.csv # 

DELIMITER ’ , ’ 
CSV HEADER 
NULL AS ’NA’ ; 

COPY 3179295 

# SELECT distinct count( * ) as failed_count , model 
FROM smart_metrics 
WHERE failure=1 
GROUP BY model ORDER BY failed_count DESC 
limit 5 ; 
 
failed_count | model 

    139 | ST4000DM000 
                    15 | ST320LT007 
                    13 | Hi t a c h i HDS722020ALA330 
                     6 | WDC WD30EFRX 
                     6 | WDC WD800AAJS 
 
(5 rows ) 
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If we are already tracking the SMART data of the disks into the database, we need to 
load it into python to build the model first. The psycopg2 module is very useful to 
connect to the database and interact with it. The data can be fetched like this: 

 
As mentioned before, the S.M.A.R.T features are not comparable between different 
models or manufacturers, so it is convenient to stay with just one model. We chose to 
analyze the model of HDD with the highest number of rows, in order to have the 
highest number of instances possible. After filtering the desired model, we discriminate 
the data by the failure label. Positive data is the one that is labeled as 1 in the “failure” 
field, and negative data is the one labeled with 0 in the same field. 
 
Now we can explore the differences between both classes. First, we can check the ratio 
of instances that wehave in each class: 

You don’t get more imbalanced classes than this! For every failed disk data, there are 
around _ 10, 000 instances of healthy HDD. To make the situation worse, there are only 
146 failed disk instances to work with. It is evident that we will need to make some 
effort to get a highly accurate model from this dataset. 
 
There is no way to know beforehand which attributes are relevant to the problem. 
Keeping all attributes just in case is a lazy strategy that will not pay off, as it will slow 
down calculations. The dimensionality of the problem may be unnecessarily high, and 

def read_disk_data( ) : 
" " " Read data, keep just 1 model and return 

2 sets diskriminated by label " " " 
import psycopg2 
import pandas as pd 
 
# Connect t o d a t a b a s e 
conn = psycopg2 . c o n n e c t ( f " h o s t ={ h o s t _ u r l } dbname={db_name} 
\ 

" + f " user={my_user} password ={ passwd } " ) 
 
# Get all data 

sql_query = f ’ select_from { table_name } limit 10000 ’ 
all_data = pd . read_sql_query ( sql_query , conn ) 

 
# Get most used model 

mos t_used_model = ( ( all_data . model . value _ counts ( ) 
/ all_data . shape [ 0 ] ) [ 0 : 1 ] ) . index [ 0 ] 
 
# Get data only for most used model 
ST400_data = all_data [ all_data . model == most_used_model ] 
neg_data = ST400_data [ ST400_data . failure == 0 ] 
pos_data = ST400_data [ ST400_data . failure == 1 ] 
 
return pos_data , neg_data 

>>> pos_data . shape [ 0 ] / float ( neg_data . shape [ 0 ] ) 
8.27e−5 
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we need to identify the features that behave differently between classes. There are a lot 
of possibilities on how to achieve this, but in this case we went with a classic: the t-test. 
This is a statistical test that gives the likelihood of two samples having the same mean 
value. A low value of this test (e.g.: p < 0.05) strongly suggests that both groups of data 
come from distributions with different mean values. By performing this kind of test for 
each attribute and dividing the groups by the failure label, we can identify the features 
that have a different mean value depending on the status of the disk. Welch’s t-test is 
suitable for this cases, where there is no a priori information about the variance of the 
distributions of the attributes. 

 
Another test that can extract the defining features of the data is the F-test, which can 
be used to check whether two groups of data have the same variance or not. 
 
As the proverb says "A picture is worth a thousand words", and it can not be highlighted 
enough. It is always good practice to present data in nice colored plots. First, let’s see 
the probability distribution functions of some of the relevant attributes, discriminated 
by class. In Figures 2 and 1, we present the probability distribution of two attributes 
named “smart_3_normalized” and “smart_9_normalized”, for the positive (green “+” 
symbols) and the negative (red circles) classes. We can observe from these plots that 
statistically, the values adopted by this attributes are different depending on the status 
of the disk. For example, failed disks tend to have lower values of the feature 
“smart_3_normalized” than healthy disks, and can be used as an indicator of the disk’s 
status. 

def get_relevant_att ( pos_data , neg_data , p_thr = 0.05 ) : 
" " " Returns a list with the relevant attributes  
T-test is performed with a significance of 0.05 " " " 
From scipy . stats import ttest_ind 
n_pos = pos_data . shape [ 0 ] 
n_neg = neg_data . shape [ 0 ] 
rel_att = [ ] 
for i_att in range ( 5 , pos_data . shape [ 1 ] −5 ) : 

if np .mod ( i_att , 2 ) == 0 : #skip RAW data 
                                 continue 

p_val = ttest_ind ( neg_data . iloc [ : , i_att ] , \ 
pos_data . iloc [ : , i_att ] , equal _var =False , \ 
nan_policy = ’ omit ’ ) [ 1 ] 
if  p_ val < p_thr : 

rel_att . append ( i_att ) 
return rel_att 
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Figure 1: Probability distribution calculated for the attribute named 
“smart_3_normalized”. The red circles correspond to the healthy disks, while the green 
plus symbols correspond to the failed disks. The healthy disks show, on average, 
different values than the failed disks. 
 
After determining which attributes are relevant to the problem, we extract the columns 
that will be used to eventually fit a model. This can be done with a function like this 
one. 

 
 
Figure 2: Probability density function calculated for an attribute named 
“smart_9_normalized”. The red circles correspond to the healthy disks, while the green 
plus symbols correspond to the failed disks. The failed disks tend to have a lower value 
of this feature, and can be used as indicator of a risky HDD. 
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Another interesting visualization that allows to gain some insight into the problem is 
the attribute vs attribute plot, discriminated by the class. In Figure 3, we can see such a 
plot, were the attributes are named “smart_189_normalized” and “smart_7_normalized” 
and the negative data (healthy disks) is shown in red circles, while the positive data 
(failed disks) are plus symbols in green. 

After playing around with the data we can proceed to searching for the best model to 
predict the status of HDD.We used the scikit-learn library for python, which facilitates 
the implementation of the most widely used models. Some of the models studied in 
this work are: Random Forest, AdaBoost, Logistic Regression, and Naive Bayes. 

 
Figure 3: Data discriminated by fail status is plotted in an attribute vs attribute plot. 
These plots allow to see on plain sight correlation between features, and visualize which 
models are better suited for the problem. Red circles represent data of healthy disks 
and the green plus symbols correspond to failed disks.  

def get_rel_data ( pos_data , neg_data , rel_att ) : 
from sklearn . linear_model import LogisticRegression 
from sklearn import datasets 
from sklearn . preprocessing import StandardScaler 
 
pos_data_array = pos_data . iloc [ : , rel_att ] . values 
neg_data_array = neg_data . iloc [ : , rel_att ] . values 
 
n_neg_data = neg_data . shape [ 0 ] 
n_tot_data = n_neg_data + pos_data . shape [ 0 ] 
 
X_data = np . zeros ( [ n_tot_data , len (rel_att) ] ) 
X_data [ 0 : n_neg_data , : ] = neg_data_array 
X_data [ n_neg_data : , : ] = pos_data_array 
Y_data = np . zeros ( n_tot_data ) 
Y_data [ 0 : n _neg_data ] = 0 
Y_data [ n_neg_data : ] = 1 

 
return X_data , Y_data 
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Before comparing the models, it is important to look at a subject that is frequently ove 
looked: Model Selection. Some of the models mentioned have hyperparameters that 
affect the score of the model. It is a wise idea to test several of these hyperparameters 
to find an optimum and get the most of the model, but it is important to do it 
performing nested cross validation. To show an example, lets focus on AdaBoost, which 
has the learning rate as a hyperparameter. It is tempting to use the entire dataset to 
find an optimum value of the learning rate, but that would lead obviously to overfitting. 
The correct way to find the optimum value for the learning rate is to perform 
training/test partitions of the data for each value of the learning rate, and perform cross 
validation. In Figure 4, we present the Area Under the Curve (AUC) of the receiver 
operating characteristic (ROC) curve, with nested cross validation, as a function of the 
learning rate. The optimum value lies around 0.125. The lines are a linear fit of part of the 
data, and it does look strange, because the horizontal axis is in logarithmic scale. 
 

 
 
Figure 4: To find the optimum value of the hyperparameter Learning Rate of the 
AdaBoost model, we plot the Area Under the ROC curve as a function of this parameter. 
The green and blue lines are linear regressions of the data, for the data to the right and 
to the left of the maximum. Horizontal axis is in log-scale. 
 
After fixing the hypermarameters of the models we can compare the models, by 
performing a new set of cross validations between models. For example, we can divide 
the data into 10 equally sized sets, and perform 10 tests with different training/testing 
values. It is important that we take new partitions, and not use the ones used to pick up 
the optimum hyperparameters of our models to avoid “leakage”. In Figure 5, we exhibit 
the ROC curve for 4 models trained in this work. It is possible to observe that there is no 
big separation between the score of the different models. In cases like this, other factors 
like the time taken to train the model or the speed to predict new data can tilt the 
decision towards one learning algorithm over another. In this case, logistic regression 
was chosen because it is very fast to train and to predict with, and has a AUC of 0.78 ± 
0.04, which is in the same range of the best models used. To overcome the imbalance 
in the label distribution of the data for the logistic regression, we can use the option 
class_weight=’balanced’ when creating the model object from the LogisticRegression 
class of the scikit-learn module.  
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Figure 5: Receiver Operating Characteristic curve for some of the models trained in this 
work. The ROC curve is always evaluated in a test set, and not over the training data. 
The area under this curve (AUC) gives a good idea of the goodness of the fit. 
 
This model could be implemented in databases to achieve a cost-effective intelligent 
backup system. For example, if we have 60 HDD with data, and we want a back up 
system to avoid data loss in an event of a disk failure, we would need in principle 120 
disks (60 data disks + 60 backup disks). We can only lose data if a very improbable event 
takes place: two disks, containing the same data break in the same day. To keep the 
math simple, let’s say that the probability of that happening is zero. Implementing the 
model developed in this 
work, we could target the 50% of disks with the highest failure risk. This means that only 
30 backup disks are needed. If you already have 60 backup disks, these could be used to 
store more data and expand the total memory of your system. The million dollar 
question now is: Using only half of the backup disks, what is the probability of losing 
data in a year? The answer is 8.6%. That is the probability that over the course of a year 
at least one HDD not backed up will fail. On the other hand, the probability that at least 
one HDD with backup will fail in the same year is 56%. This model could also be 
implemented to help in redundancy systems, which creates multiple copies of files 
across several hard drives. To sum it up, accepting a little risk it is possible to save large 
amounts of space designated to backup data. 


