
Joining 1 million tables

Hans-Jürgen Schönig

www.postgresql-support.de

Hans-Jürgen Schönig
www.postgresql-support.de

Joining 1 million tables

Hans-Jürgen Schönig
www.postgresql-support.de

Dedication . . .

I This talk is dedicated to all broken database designs :)
I Thank you guys for breaking so much stuff
I Thank you for inspiring this talk

Hans-Jürgen Schönig
www.postgresql-support.de

The goal

I Creating and joining 1 million tables

I Pushing PostgreSQL to its limits (and definitely beyond)

I How far can we push this without patching the core?

I Being the first one to try this ;)

Hans-Jürgen Schönig
www.postgresql-support.de

Creating 1 million tables is easy, no?

I Here is a script:

#!/usr/bin/perl

print "BEGIN;\n";

for (my $i = 0; $i < 1000000; $i++)

{
print "CREATE TABLE t_tab_$i (id int4);\n";

}

print "COMMIT;\n";

Hans-Jürgen Schönig
www.postgresql-support.de

Creating 1 million tables

Who expects this to work?

Hans-Jürgen Schönig
www.postgresql-support.de

Well, it does not ;)

CREATE TABLE

CREATE TABLE

WARNING: out of shared memory

ERROR: out of shared memory

HINT: You might need to increase

max_locks_per_transaction.

ERROR: current transaction is aborted, commands ignored

until end of transaction block

Hans-Jürgen Schönig
www.postgresql-support.de

Why does it fail?

I There is a variable called max locks per transaction

I max locks per transaction * maximum connections =
maximum number of locks

I 100 connection x 64 is by far not enough

Hans-Jürgen Schönig
www.postgresql-support.de

A quick workaround

I Use single transactions
I Avoid nasty disk flushes on the way

SET synchronous_commit TO off;

time ./create_tables.pl | psql test > /dev/null

real 14m45.320s

user 0m45.778s

sys 0m18.877s

Hans-Jürgen Schönig
www.postgresql-support.de

Reporting success . . .

test=# SELECT count(tablename)

FROM pg_tables

WHERE schemaname = ’public’;

count

1000000

(1 row)

I One million tables have been created

Hans-Jürgen Schönig
www.postgresql-support.de

Creating an SQL statement

I Writing this by hand is not feasible
I Desired output:

SELECT 1

FROM t_tab_1, t_tab_2, t_tab_3, t_tab_4, t_tab_5

WHERE t_tab_1.id = t_tab_2.id AND

t_tab_2.id = t_tab_3.id AND

t_tab_3.id = t_tab_4.id AND

t_tab_4.id = t_tab_5.id AND

1 = 1;

Hans-Jürgen Schönig
www.postgresql-support.de

A first attempt to write a script

#!/usr/bin/perl

my $joins = 5; my $sel = "SELECT 1 ";

my $from = ""; my $where = "";

for (my $i = 1; $i < $joins; $i++)

{
$from .= "t_tab_$i, \n";
$where .= " t_tab_" . ($i) . ".id = t_tab_".

($i+1) . ".id AND \n";
}
$from .= " t_tab_$joins ";

$where .= " 1 = 1; ";

print "$sel \n FROM $from \n WHERE $where\n";

Hans-Jürgen Schönig
www.postgresql-support.de

1 million tables: What it means

I If you do this for 1 million tables . . .

perl create.pl | wc

2000001 5000003 54666686

I 54 MB of SQL is quite a bit of code
I First observation: The parser works ;)

Hans-Jürgen Schönig
www.postgresql-support.de

Giving it a try

I runtimes with PostgreSQL default settings:

I n = 10: 158 ms
I n = 100; 948 ms
I n = 200: 3970 ms
I n = 400: 18356 ms
I n = 800: 87095 ms
I n = 1000000: prediction = 1575 days :)

I ouch, this does not look linear
I 1575 days was too close to the conference

Hans-Jürgen Schönig
www.postgresql-support.de

GEQO:

I At some point GEQO will kick in
I Maybe it is the problem?

SET geqo TO off;

I n = 10: 158 ms

I n = 100: ERROR: canceling statement due to user request
Time: 680847.127 ms

I It clearly is not . . .

Hans-Jürgen Schönig
www.postgresql-support.de

It seems GEQO is needed

I Let us see how far we can get by adjusting GEQO settings

SET geqo_effort TO 1;

- n = 10: 158 ms

- n = 100: 916 ms

- n = 200: 1464 ms

- n = 400: 4694 ms

- n = 800: 18896 ms

- n = 10000000: maybe 1 year? :)

=> the conference deadline is coming closer

=> still 999.000 tables to go ...

Hans-Jürgen Schönig
www.postgresql-support.de

Trying with 10.000 tables

./make_join.pl 10000 | psql test

ERROR: stack depth limit exceeded

HINT: Increase the configuration parameter

max_stack_depth (currently 2048kB), after ensuring

the platform’s stack depth limit is adequate.

I this is easy to fix

Hans-Jürgen Schönig
www.postgresql-support.de

Removing limitations

I Problem can be fixed easily
OS: ulimit -s unlimited
postgresql.conf: set max stack depth to a very high value

Hans-Jürgen Schönig
www.postgresql-support.de

Next stop: Exponential planning time

I Obviously planning time goes up exponentially

I There is no way to do this without patching

I As long as we are ways slower than linear it is impossible to
join 1 million tables.

Hans-Jürgen Schönig
www.postgresql-support.de

This is how PostgreSQL joins tables:

Tables a, b, c, d form the following joins of 2:

[a, b], [a, c], [a, d], [b, c], [b, d], [c, d]

By adding a single table to each group, the following joins of 3 are
constructed:

[[a, b], c], [[a, b], d], [[a, c], b], [[a, c], d], [[a, d], b], [[a, d], c], [[b,
c], a], [[b, c], d], [[b, d], a], [[b, d], c], [[c, d], a], [[c, d], b]

Hans-Jürgen Schönig
www.postgresql-support.de

More joining

Likewise, add a single table to each to get the final joins:

[[[a, b], c], d], [[[a, b], d], c], [[[a, c], b], d], [[[a, c], d], b], [[[a, d],
b], c], [[[a, d], c], b], [[[b, c], a], d], [[[b, c], d], a], [[[b, d], a], c],
[[[b, d], c], a], [[[c, d], a], b], [[[c, d], b], a]

I Got it? ;)

Hans-Jürgen Schönig
www.postgresql-support.de

A little patching

A little patch ensures that the list of tables is grouped into
“sub-lists”, where the length of each sub-list is equal to
from collapse limit. If from collapse limit is 2, the list of 4
becomes . . .

[a, b], [c, d]

[a, b] and [c, d] are joined separately, so we only get
one “path”:

[[a, b], [c, d]]

Hans-Jürgen Schönig
www.postgresql-support.de

The downside:

I This ensures minimal planning time but is also no real
optimization.

I There is no potential for GEQO to improve things

I Speed is not an issue in our case anyway. It just has to work
“somehow”.

Hans-Jürgen Schönig
www.postgresql-support.de

Are we on a path to success?

I Of course not ;)

Hans-Jürgen Schönig
www.postgresql-support.de

The next limitation

I the join fails again

ERROR: too many range table entries

Hans-Jürgen Schönig
www.postgresql-support.de

This time life is easy

Solution: in include/nodes/primnodes.h

#define INNER_VAR 65000

/* reference to inner subplan */

#define OUTER_VAR 65001

/* reference to outer subplan *

#define INDEX_VAR 65002

/* reference to index column */

to

#define INNER_VAR 2000000

#define OUTER_VAR 2000001

#define INDEX_VAR 2000002

Hans-Jürgen Schönig
www.postgresql-support.de

Next stop: RAM starts to be an issue

| Tables (k) | Planning time (s) | Memory

|------------+-------------------+---------------------|

| 2 | 1 | 38.5 MB |

| 4 | 3 | 75.6 MB |

| 8 | 31 | 192 MB |

| 16 | 186 | 550 MB |

| 32 | 1067 | 1.7 GB |

(this is for planning only)

Expected amount of memory: not available ;)

Hans-Jürgen Schönig
www.postgresql-support.de

Is there a way out?

I Clearly: The current path leads to nowhere

I Some other approach is needed

I Divide and conquer?

Hans-Jürgen Schönig
www.postgresql-support.de

Changing the query

I Currently there is . . .

SELECT 1 ...

FROM tab1, ..., tabn

WHERE ...

I The problem must be split

Hans-Jürgen Schönig
www.postgresql-support.de

CTEs might come to the rescue

I How about creating WITH-clauses joining smaller sets of
tables?

I At the end those WITH statements could be joined together
easily.

I 1.000 CTEs with 1.000 tables each gives 1.000.000 tables

I Scary stuff: Runtime + memory Unforeseen stuff

Hans-Jürgen Schönig
www.postgresql-support.de

A skeleton query

SET enable_indexscan TO off;

SET enable_hashjoin TO off;

SET enable_mergejoin TO off;

SET from_collapse_limit TO 2;

SET max_stack_depth TO ’1GB’;

WITH cte_0(id_1, id_2) AS (

SELECT t_tab_0.id, t_tab_16383.id

FROM t_tab_0, ...

cte_1 ...

SELECT ... FROM cte_0, cte_1 WHERE ...

Hans-Jürgen Schönig
www.postgresql-support.de

Finally: A path to enlightenment

I With all the RAM we had . . .
I With all the patience we had . . .
I With a fair amount of luck . . .
I And with a lot of confidence . . .

Hans-Jürgen Schönig
www.postgresql-support.de

Finally: It worked . . .

I Runtime: 10h 36min 53 sec

I The result:

?column?

(0 rows)

Hans-Jürgen Schönig
www.postgresql-support.de

Runtime data:

I The “raw parsing” (by YACC) takes merely 2 seconds. RAM
consumption: 933 MB.

I The “analysis” (this can actually be considered to be the 2nd
phase of parsing) took 4144 seconds and 1.4 GB RAM.

I Planning itself took only 1027 seconds and consumed nearly
13 GB RAM.

I Execution is an issue

Hans-Jürgen Schönig
www.postgresql-support.de

Finally

Hans-Jürgen Schönig
www.postgresql-support.de

Thank you for your attention

Cybertec Schönig & Schönig GmbH

Hans-Jürgen Schönig

Gröhrmühlgasse 26

A-2700 Wiener Neustadt

www.postgresql-support.de

Hans-Jürgen Schönig
www.postgresql-support.de

	Joining 1 million tables
	Finally

