
PostgreSQL … in 5 minutes

„PostgreSQL … in 5 minutes“ © Hans-Jürgen Schönig www.cybertec.at

PostgreSQL Fuzzy Searches in 5 minutes

In many cases people grow frustrated because they are not able to find entries in a database due to typos or some other kind of error. Clearly, a GUI is a
lot more useful if it supports fuzzy searching. To do that PostgreSQL provides a simple mechanism called “trigrams”. Here is how it works - in 5 minutes:

Let‘s start

First of all we can create a little table containing just one column. The goal of this example is to load the name of all Austrian cities and villages and do
fuzzy matching:

fuzzy=# CREATE TABLE t_location (name text);
CREATE TABLE

Once we have created the table we can load the data. PostgreSQL is able to read directly from a pipe and store data in a table. Here is how it works:

fuzzy=# COPY t_location FROM PROGRAM 'curl www.cybertec.at/secret/orte.txt';
COPY 2354

We use a command line tool called “curl” to load the data directly from the web.
The data looks like this:

fuzzy=# SELECT * FROM t_location;
 name

 Eisenstadt
Rust
...

To do fuzzy searching we have to enable an extension called pg_trgm which is part of the PostgreSQL distribution (contrib):

fuzzy=# CREATE EXTENSION pg_trgm;
CREATE EXTENSION

Then we can already create an index on this column. Note that we have to create a so called Gist index which is capable of performing so called “KNN-
search” (= Nearest Neighbor Search):

fuzzy=# CREATE INDEX idx_trgm ON t_location USING gist(name gist_trgm_ops);
CREATE INDEX

pg_trgm will provide us with a “distance operator” (<->). We can use this operator to find those strings, which are closest to what we are looking for. In
our example we want to find the 3 closest strings:

fuzzy=# SELECT * FROM t_location ORDER BY name <-> 'krammatneusiedel' LIMIT 3;
 name

 Gramatneusiedl
 Klein-Neusiedl
 Potzneusiedl
(3 rows)

The cool thing about this is that the query can actually use an index making things supersonic fast:

fuzzy=# explain SELECT * FROM t_location ORDER BY name <-> 'krammatneusiedel' LIMIT 3;
 QUERY PLAN

 Limit (cost=0.14..0.40 rows=3 width=13)
 -> Index Scan using idx_trgm on t_location (cost=0.14..203.22 rows=2354 width=13)
 Order By: (name <-> 'krammatneusiedel'::text)
(3 rows)

Trigrams are especially useful if you want to index words, names, addresses and so on.

