

CYBERTEC PGEE ​
SPEEDING UP LARGE SCALE AGGREGATIONS

Date: 2024-12-13
Publisher: CYBERTEC PGEE Team

TABLE OF CONTENTS

TABLE OF CONTENTS..2
PGEE: PERFORMANCE TUNING GUIDE...3

PREPARING SAMPLE DATA.. 4
ADVANCED AGGREGATION AND GROUPING.. 6

UNDERSTANDING POSTGRESQL AGGREGATION...7
LIGHTNING FAST QUERIES WITH PGEE... 9
ADVANCED EXECUTION IN PGEE...11

SUPPORT AND GETTING HELP.. 12
REQUESTING HELP...12

VERSION HISTORY.. 13

2

PGEE: PERFORMANCE TUNING GUIDE
This document describes performance tricks that can be applied to PGEE to speed
up large-scale aggregations and analytical workloads. We focus on some of the
optimizations which are part of the PGEE query optimizer that have been specifically
designed for enterprise-grade workloads in a highly scalable and often regulated
environment.

The following topics are covered:

●​ Execution order of aggregation functions
●​ Adjusting PostgreSQL parameters for fast analytics
●​ Performance and plan inspection

3

PREPARING SAMPLE DATA

For the purpose of this example, it is necessary to first create some sample data
which is used to outline various steps leading to better performance.

After starting PGEE, we can create a sample database (from the Linux command
line).

[hs@pgee ~]$ createdb benchmark
[hs@pgee ~]$ psql benchmark
psql (17.2 EE 1.4.0, server 17.2 EE 1.4.0)
 ____ ____ _____ _____
| _ \ / ___| ____| ____|
| |_) | | _| _| | _|
| __/| |_| | |___| |___
|_| ____|_____|_____|
PostgreSQL EE by CYBERTEC
Type "help" for help.

benchmark=#

Alternatively,, it is also possible to use other graphical tools such as pgadmin4
among many others.

In the next step, we will create two tables: one will store a handful of countries
(t_country) and the second will handle sales (t_sales). We can create and
populate the data as follows:

benchmark=# CREATE TABLE t_country (

id ​ ​ int ​ PRIMARY KEY,
name ​​ text

);
CREATE TABLE

benchmark=# INSERT INTO t_country

VALUES ​ (1, 'USA'),
(2, 'South Africa'),
(3, 'Germany'),
(4, 'India');

INSERT 0 4

benchmark=# CREATE TABLE t_sales (

4

country_id ​ int,
t ​ ​ ​ timestamptz DEFAULT clock_timestamp(),
units ​ ​ int

);
CREATE TABLE

benchmark=# INSERT INTO t_sales (country_id, units)

SELECT ​ (id % 4) + 1, random()*10000
FROM ​​ generate_series(1, 200000000) AS id;

INSERT 0 200000000

As we can see here, the country table is really small - it includes only 4 countries.
This is a very common case. In most large databases, there are typically various
small lookup tables (to store data such as countries, currencies, etc) and a handful
of really large tables. In our example, the large table serves as the sales table,
populated with 200 million rows.

On disk this means:

benchmark=# \d+
 List of relations
 Schema | Name | … | Size
--------+-----------+---+---------
 public | t_country | … | 16 kB
 public | t_sales | … | 9955 MB
(2 rows)

While the lookup table is only 16 kB, the second table is close to 10 GB.

5

ADVANCED AGGREGATION AND GROUPING

If you are doing simple analysis and aggregation, a typical question to ask
PostgreSQL would be:

On the SQL level this translates to:

benchmark=# \timing
Timing is on.
benchmark=# ​

SELECT ​ name, count(*)
FROM ​​ t_country AS c, t_sales AS s
WHERE ​ s.country_id = c.id
GROUP BY 1
ORDER BY 2 DESC;

 name | count
--------------+----------
 Germany | 50000000
 India | 50000000
 South Africa | 50000000
 USA | 50000000
(4 rows)

Time: 5387.018 ms (00:05.387)

Here, we join both tables using the country_id and apply the count function on top.
On the test machine, the query takes 5.4 seconds. While this still translates to 37
million rows per second, we can do a lot better.

6

UNDERSTANDING POSTGRESQL AGGREGATION

Before we dig into the details, we have to inspect the execution plan standard
PostgreSQL would give us when running the query:

benchmark=#

explain SELECT ​ name, count(*)
FROM ​​ t_country AS c, t_sales AS s
WHERE ​ s.country_id = c.id
GROUP BY 1
ORDER BY 2 DESC;

 QUERY PLAN
--
 Sort (cost=2295202.29..2295202.30 rows=4 width=15)
 Sort Key: (count(*)) DESC
 -> Finalize GroupAggregate (cost=2295200.22..2295202.25 …)
 Group Key: c.name
 -> Gather Merge (cost=2295200.22..2295202.13 …)
 Workers Planned: 4
 -> Sort (cost=2294200.16..2294200.17 rows=4 width=15)
 Sort Key: c.name
 -> Partial HashAggregate

 (cost=2294200.08..2294200.12 rows=4 width=15)
 Group Key: c.name
 -> Hash Join
 (cost=1.09..2044199.96 rows=50000024 width=7)
 Hash Cond: (s.country_id = c.id)
 -> Parallel Seq Scan on t_sales s

(cost=0.00..1773886.24 rows=50000024 …)
 -> Hash (cost=1.04..1.04 rows=4 width=11)
 -> Seq Scan on t_country c

 (cost=0.00..1.04 rows=4 width=11)
 JIT:
 Functions: 15
 Options: Inlining true, Optimization true,
 Expressions true, Deforming true
(18 rows)

Time: 1.658 ms

There are a few key points to note here. First of all, we can see:

●​ PostgreSQL uses a parallel query for higher efficiency

7

○​ In this case, 4 parallel workers
○​ This can be turned depending on various factors

What is more important here is the execution order the query is using:

●​ Read countries sequentially
●​ Read sales data sequentially
●​ Join the data
●​ Count the data

In reality, this means:

In real life, this means a lot of overhead; however, this is the way the standard
PostgreSQL optimizer operates.

8

LIGHTNING FAST QUERIES WITH PGEE

PGEE offers significantly better aggregation
speed over Open Source PostgreSQL, ​
as we will learn in this section.

CYBERTEC has greatly improved the PGEE
optimizer to allow PostgreSQL to make some key
changes to the way aggregations are handled:

By cleverly aggregating on numbers first, we can greatly reduce the number of
lookups in a highly normalized data model. What does this mean in real life?

To benefit from PGEE optimizations, you can set enable_agg_pushdown to true in
postgresql.conf, or set the variable at runtime:

benchmark=# SET enable_agg_pushdown = on;
SET
Time: 0.575 ms
benchmark=#
benchmark=# SELECT ​ name, count(*)

 FROM ​ t_country AS c, t_sales AS s
 WHERE ​ s.country_id = c.id
 GROUP BY 1
 ORDER BY 2 DESC;

 name | count
--------------+----------
 Germany | 50000000
 India | 50000000
 South Africa | 50000000
 USA | 50000000
(4 rows)

Time: 2684.197 ms (00:02.684)

9

PGEE has processed 74.5 million rows / second vs 37 million rows.

10

ADVANCED EXECUTION IN PGEE

The performance gains provided by PGEE are relevant. However, it is important to
understand how we can observe those benefits when looking at the execution plan
of the query in more detail:

benchmark=#

explain ​ SELECT name, count(*)
FROM ​ t_country AS c, t_sales AS s
WHERE s.country_id = c.id
GROUP BY 1
ORDER BY 2 DESC;

 QUERY PLAN
--
 Sort (cost=2024887.63..2024887.64 rows=4 width=15)
 Sort Key: (count(*)) DESC
 -> Finalize GroupAggregate (cost=2024887.05..2024887.59 …)
 Group Key: c.name
 -> Gather Merge (cost=2024887.05..2024887.53 …)
 Workers Planned: 4
 -> Sort (cost=2023886.99..2023887.00 rows=1 width=15)
 Sort Key: c.name
 -> Nested Loop (cost=2023886.49..2023886.98 …)
 -> Partial HashAggregate
 (cost=2023886.36..2023886.40 rows=4 width=12)
 Group Key: s.country_id
 -> Parallel Seq Scan on t_sales s
 (cost=0.00..1773886.24 rows=50000024 …)
 -> Index Scan using t_country_pkey on t_country c
 (cost=0.13..0.15 rows=1 width=11)
 Index Cond: (id = s.country_id)
 JIT:
 Functions: 10
 Options: Inlining true, Optimization true, Expressions true,
Deforming true
(17 rows)

Time: 1.528 ms

In this case, the Partial HashAggregate is directly operating on the data, returned ​
by the sequential scan on the country table. As an aggregation key, we are able ​
to use the country_id rather than the name, which is way more efficient.

11

Internally, this requires data type substitution, as well as some other advanced
trickery which is beyond the scope of this document.

SUPPORT AND GETTING HELP

REQUESTING HELP

Thank you for using CYBERTEC PGEE and for being our valued customer. ​
Your feedback is important to us and we look forward to hearing from you. If you encounter any
issues, or have technical questions, please reach out to our technical team. Our 24/7 support and
ticketing system are here to assist you.
.

CYBERTEC Support Portal

Our consultants are eager to help you with ​
​ any technical and business related issues.

12

https://www.cybertec-postgresql.com/en/services/postgresql-support/

VERSION HISTORY

Version Effective Date Description Author Reviewed By Approved By

1.0 2024-12-13 Content written
Hans-Jürgen
Schönig

Christoph Berg
Cornelia
Biacsics

13

	CYBERTEC PGEE ​SPEEDING UP LARGE SCALE AGGREGATIONS
	TABLE OF CONTENTS
	PGEE: PERFORMANCE TUNING GUIDE
	PREPARING SAMPLE DATA
	
	ADVANCED AGGREGATION AND GROUPING
	
	UNDERSTANDING POSTGRESQL AGGREGATION
	
	LIGHTNING FAST QUERIES WITH PGEE
	
	ADVANCED EXECUTION IN PGEE

	SUPPORT AND GETTING HELP
	REQUESTING HELP

	
	
	
	
	VERSION HISTORY

