

CYBERTEC PGEE ​
DATA MASKING & OBFUSCATION

Document version: ​ 1.1
Last change: ​ ​ 2025-04-11

TABLE OF CONTENTS

TABLE OF CONTENTS..2
PGEE: COMPREHENSIVE DATABASE SECURITY.. 3
WHY OBFUSCATION AND SECURITY MATTER... 4
USING OBFUSCATION AND MASKING... 5

STEP 1: CREATING A SIMPLE DATA MODEL... 6
STEP 2: DEPLOYING A SIMPLE OBFUSCATION MODEL.......................................7
STEP 3: EXTRACT OBFUSCATED DATA...8
OPTIONAL: ENABLING LOGICAL DECODING... 9

SUPPORT AND GETTING HELP.. 11
REQUESTING HELP...11

VERSION HISTORY.. 13

2

PGEE: COMPREHENSIVE DATABASE SECURITY
CYBERTEC PostgreSQL Enterprise Edition (PGEE) is a CYBERTEC product which has
been designed for enterprise-grade security in critical environments that require
additional security as well as regular auditing. This solution focuses heavily on
compliance and business critical workloads for various industries, including but not
limited to:

●​ Banking and financial services
●​ Governments and defense
●​ Critical national infrastructure
●​ Business-critical missions

Ensuring security is key and therefore our first priority is to provide customers with
encryption at every level while delivering cutting edge performance.

PGEE offers comprehensive database security and provides the necessary tooling to
enable enterprise success, focusing on these key aspects:

●​ Encryption at every level
●​ Secure software development
●​ Auditing and certification

3

WHY OBFUSCATION AND SECURITY MATTER
Data obfuscation in a relational database makes sense as an added layer of security
to protect sensitive information. When sensitive data such as personally identifiable
information (PII), financial data, or confidential business information is stored in a
database, it's crucial to ensure that this data remains private and secure.

Obfuscating this data by substituting it with artificially generated values or
scrambling the original data can significantly reduce the risk of unauthorized access,
theft, or leakage. By making it difficult for attackers to decipher the original data
even if they gain access to the database, obfuscation adds an additional hurdle for
malicious actors to overcome, increasing the overall security posture of the system.

Additionally, obfuscation can also help to mask patterns and relationships within the
data, further limiting the potential damage in case of a breach.

This document will discuss the following topics:

●​ How to make use of data masking in PGEE
●​ Exporting data
●​ Adding custom modules

4

USING OBFUSCATION AND MASKING
In PGEE obfuscation is part of the core product. The idea is to apply a function to a
column of your choice and allow administrators to export this data to other hosts.

The following process shows the overall workflow:

●​ Define an obfuscation model in your database
●​ Export the database in a secure way
●​ Import the dump on the target system.

Defining an obfuscation model in real life means that only a handful of columns
might be secret as shown in the next example:​

ID Name Credit Card *

23 Hans 4548 3432 9874 2342

24 Paul 6890 3091 4789 0981

25 Jane 5567 4352 1099 4353

PGEE strictly separates the core database from the obfuscated version to reduce
any risk of data breaches and leaks.

Safely hand over data to your development teams and make sure all security
regulations are met without exceptions.

In the next section we will dive into the practical aspects of data masking provided
by PGEE.

5

STEP 1: CREATING A SIMPLE DATA MODEL

The following code snippet contains a simple table which contains important
information which needs to be protected:

pgee=# CREATE TABLE t_product (

id ​ ​ ​ serial,
product_number ​ text,
price ​ ​ numeric,
units_available ​int

);
CREATE TABLE

Let us add some sample data to the table:

pgee=# INSERT INTO t_product

(product_number, price, units_available)
VALUES ​ ('SA456BJ3', 459.95, 343),

('KLM009', 98.25, 29),
('BKL1902', 582.78, 56.34);

INSERT 0 3
pgee=# SELECT * FROM t_product;
 id | product_number | price | units_available
----+----------------+--------+-----------------
 1 | SA456BJ3 | 459.95 | 343
 2 | KLM009 | 98.25 | 29
 3 | BKL1902 | 582.78 | 56
(3 rows)

We will use this trivial example through the entire document to demonstrate what
can be done.

6

STEP 2: DEPLOYING A SIMPLE OBFUSCATION MODEL

The way PGEE works is that you can apply a simple function to columns which
should not be visible to the receiving development team. To configure obfuscation
we can simply call ALTER TABLE … ALTER COLUMN … SET MASK and apply an
expression:

pgee=# ALTER TABLE t_product

ALTER COLUMN product_number
SET MASK md5(product_number);

ALTER TABLE
In this case we apply the md5 function to the column. Note that this does NOT mean
that we see different data — data will be extracted later. All we did is to assign rules
to the column:

pgee=# SELECT * FROM t_product;
 id | product_number | price | units_available
----+----------------+--------+-----------------
 1 | SA456BJ3 | 459.95 | 343
 2 | KLM009 | 98.25 | 29
 3 | BKL1902 | 582.78 | 56
(3 rows)

The crucial piece of information here is that the expression has to be IMMUTABLE. It
is not allowed to use a VOLATILE expression which is not guaranteed to return the
same data every time.

The following example shows exactly what happens:

pgee=# ALTER TABLE t_product

ALTER COLUMN units_available
SET MASK units_available*random();

ERROR: invalid MASK expression
DETAIL: User-defined or built-in mutable functions

 are not allowed.

Using a deterministic expression will fix the problem.

pgee=# ALTER TABLE t_product

ALTER COLUMN units_available
SET MASK units_available*pi();

ALTER TABLE

7

STEP 3: EXTRACT OBFUSCATED DATA

Now that we have defined the obfuscation model we can extract the data. The way
to do that is to use pg_dump with a PGEE-specific command line flag:

postgres@hans:~$ pg_dump --masked pgee
--
-- PostgreSQL database dump
--

...

CREATE TABLE public.t_product (
 id integer NOT NULL,
 product_number text,
 price numeric,
 units_available integer
);

…

--
-- Data for Name: t_product; Type: TABLE DATA; Schema:
public; Owner: postgres
--

COPY public.t_product (id, product_number, price, units_available)
FROM stdin;
1​ ddc90a55917a4e8f79aada69b8e3ebf8​ 459.95​
1077.56621812991
2​ f926a788bda72d04591753a2176d1d72​ 98.25​ 91.1061869104
3​ 143ef26ffce1d497fc3991a7ec418d51​ 582.78​
175.929860102841
\.

…

--
-- PostgreSQL database dump complete
--

Extracting the obfuscated data can be facilitated using the “--masked” command line
option. You can take this text representation and load it into your target database.

8

However, caution is advised:

●​ Keep in mind that obfuscation can break constraints
○​ Make sure your obfuscation functions comply with your constraints
○​ Keep in mind that unique indexes must stay unique

●​ Be careful with numbers
○​ Your financial reports might return inconsistent data
○​ Numbers might not add up

OPTIONAL: ENABLING LOGICAL DECODING

In PGEE logical decoding is often used to stream data between hosts. By decoding
the WAL it is possible to easily dispatch data inside large scale organizations. Of
course we are also able to stream obfuscated data. These two commands are the
key to success: CREATE PUBLICATION and CREATE SUBSCRIPTION:

pgee=# \h CREATE PUBLICATION
Command: CREATE PUBLICATION
Description: define a new publication
Syntax:
CREATE PUBLICATION name
 [FOR ALL TABLES
 | FOR publication_object [, ...]]
 [WITH (publication_parameter [= value] [, ...])]

where publication_object is one of:

 TABLE [ONLY] table_name [*] [(column_name [, ...]
)] [WHERE (expression)] [, ...]
 TABLES IN SCHEMA { schema_name | CURRENT_SCHEMA } [, ...
]

Basically a table can be streamed in two ways:

●​ Plain data
●​ Obfuscated data

9

If you want to send the obfuscated version of data you have to add a parameter to
the WITH-clause as shown below:

CREATE PUBLICATION mypublication

FOR TABLE t_product
WITH (mask=on);

In this case PGEE will send the data to the subscriber in the desired format thus
ensuring that only safe data can ever reach the destination.

10

SUPPORT AND GETTING HELP

REQUESTING HELP

Thank you for using CYBERTEC PGEE and thank you for being our customer.
Your feedback is important to us and we are looking forward to hearing from you.
If you are facing any issues or technical questions please reach out to our technical
team and make use of our 24x7 support and ticketing system.

 CYBERTEC Support Portal

 Our consultants are eager to help you with ​
 any technical and business related issues.

11

https://www.cybertec-postgresql.com/en/services/postgresql-support/

CYBERTEC PostgreSQL
International (HQ)
Römerstraße 19
2752 Wöllersdorf
Austria
Phone: +43 (0)2622 93022-0
E-Mail: office@cybertec.at

CYBERTEC PostgreSQL ​
Switzerland
Bahnhofstraße 10
8001 Zürich
Switzerland
Phone: +41 43 456 2684
E-Mail:
swiss@cybertec-postgresql.com

CYBERTEC PostgreSQL Nordic
Fahle Office
Tartu mnt 84a-M302
10112 Tallinn
Estonia
Phone: +372 712 3013
E-Mail:
nordic@cybertec-postgresql.com

CYBERTEC PostgreSQL Poland
Pl. Inwalidów 10
01-552 Warsaw
Poland
E-Mail:
poland@cybertec-postgresql.com

CYBERTEC PG Database Services
South America S.A.
Misiones 1486, Piso 3
11000 Montevideo
Uruguay
E-Mail:
latam@cybertec-postgresql.com

CYBERTEC PostgreSQL ​
South Africa
No. 26, Cambridge Office Park
5 Bauhinia Street, Highveld Techno
Park
0046 Centurion
South Africa
Phone: +27(0)012 881 1911
E-Mail:
africa@cybertec-postgresql.com

12

VERSION HISTORY

Version Effective Date Description Author Reviewed By Approved By

1.0 2024-09-16
Creation of the
document

Mariya
Bouraima

Hans-Jürgen
Schönig

Mariya
Bouraima

1.1 2025-04-11 New layout and QA Leonie Berndt
Andrea
Schantl-Weiß

Sarah Gruber

​

13

	
	CYBERTEC PGEE ​DATA MASKING & OBFUSCATION
	TABLE OF CONTENTS
	PGEE: COMPREHENSIVE DATABASE SECURITY
	WHY OBFUSCATION AND SECURITY MATTER
	
	USING OBFUSCATION AND MASKING
	
	STEP 1: CREATING A SIMPLE DATA MODEL
	
	STEP 2: DEPLOYING A SIMPLE OBFUSCATION MODEL
	STEP 3: EXTRACT OBFUSCATED DATA
	
	OPTIONAL: ENABLING LOGICAL DECODING

	SUPPORT AND GETTING HELP
	REQUESTING HELP

	VERSION HISTORY

