What is Machine Learning?

Machine Learning is part of Artificial Intelligence, which both are sub categories of Data Science. Basically, it is all about the generation of artificial knowledge from the experience of a machine or a system. Based on existing data and algorithms, IT systems should recognize patterns and laws and independently develop adequate solutions.

Machine Learning

Use Case: Optimized Refuelling

The driving-behaviour of a driver may indicate when he tends to refuel his car. Some people refuel when the fuel tank is empty – other customers already refuel again when the fuel gauge is set to “½”. So you can calculate an individual refuelling profile and use the monitor to suggest a cheap gas station nearby to the driver, to help him save money. In the long term, it would also be feasible to find local business partners and, for example, present their special offers to end-users. In this way, suggestions can be made for low-cost petrol stations or restaurants on the route to the revenue stream.

Machine Learning - Refuel Behaviour

Use Case: Advanced TV Analyses

Modern technologies, such as machine learning, can be used to analyse the typical television behaviour of a family in depth. For example, a device is implemented in the television-set that uses eye tracking, to detect whether and how many consumers are actually watching actively and can determine the channel using sound recordings. Based on this collected data, patterns can be analyzed and used predictively for individual advertising broadcasts. So if only the 10-year-old daughter watches attentively anyway, why broadcast a detergent advertisement? In this case, advertising that targets specifically this younger target group would be much more effective, wouldn’t it?

Machine Learning

 

Our Expertise: Machine Learning & PostgreSQL

When data is generated as in the examples described above, masses of data are collected. Often these huge amounts of data are simply “thrown” into a matrix and afterwards you would not only need a lot of time, but also a good memory to prepare these data sets for the machine learning process. So why not prepare the data in PostgreSQL right away? This saves time and money, is much more flexible and easier to implement.

You can read how to prepare your PostgreSQL database for machine learning in this blog post.

Read on >>

 

Learn more about how to run the Kmeans algorithm directly in your PostgreSQL database.

Read on >>

 

Reinforcement Learning: Read more about how RL algorithms work in this blog post.

Read on >>

 

PGNeural – Artificial Intelligence for PostgreSQL

PGNeural can help you with the professional deployment of Machine Learning in PostgreSQL databases. This is a product developed by CYBERTEC that contains numerous algorithms and procedures that can be used directly in PostgreSQL (Kohonen Network, Support Vector Machines, etc.). PGNeural supports you in the implementation of Data Science in your PostgreSQL database and makes it easier for you to get started.

PGNeural >>

 

A Cost-Effective Back-Up Method

Did you know that you can use machine learning in a PostgreSQL database to economically run backups? Learn more in our free white paper “Using Machine learning to back up data in a cost-effective way”!

Download Whitepaper >>

CYBERTEC trainings

If you would like to learn more about this topic, you can register for our five-day beginners course “Future Technology: Machine Learning“. In this course you will learn how to realize, solve and implement machine learning problems in Python.

Register now! >>

Professional Help

Contact us today to discuss how CYBERTEC can help you implement PostgreSQL-based data science. We offer prompt delivery, professional work and 20 years of PostgreSQL experience.

Contact us >>